• 제목/요약/키워드: N-terminal analysis

검색결과 478건 처리시간 0.028초

Label-Free Quantitative Proteomics and N-terminal Analysis of Human Metastatic Lung Cancer Cells

  • Min, Hophil;Han, Dohyun;Kim, Yikwon;Cho, Jee Yeon;Jin, Jonghwa;Kim, Youngsoo
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.457-466
    • /
    • 2014
  • Proteomic analysis is helpful in identifying cancerassociated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine metastatic process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials - NCI-H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.

Enzymatic properties of the N- and C-terminal halves of human hexokinase II

  • Ahn, Keun-Jae;Kim, Jong-Sun;Yun, Mi-Jin;Park, Jeon-Han;Lee, Jong-Doo
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.350-355
    • /
    • 2009
  • Although previous studies on hexokinase (HK) II indicate both the N- and C-terminal halves are catalytically active, we show in this study the N-terminal half is significantly more catalytic than the C-terminal half in addition to having a significantly higher $K_m$ for ATP and Glu. Furthermore, truncated forms of intact HK II lacking its first N-terminal 18 amino acids ($\Delta$18) and a truncated N-terminal half lacking its first 18 amino acids ($\Delta$18N) have higher catalytic activity than other mutants tested. Similar results were obtained by PET-scan analysis using $^{18}F-FDG$. Our results collectively suggest that each domain of HK II possesses enzyme activity, unlike HK I, with the N-terminal half showing higher enzyme activity than the C-terminal half.

Effects of the Heptasequence SPTSPTY of Rat Nuclear Factor 1-A on Interactions between the C-Terminal Regions of Mammalian Nuclear Factor 1 Proteins

  • Hwang, Jung-Su;Kim, Ji-Young
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.519-524
    • /
    • 2000
  • NF1 proteins are a family of DNA binding proteins which consist of two separate domains, N-terminal DNA binding domain and C-terminal transcription activation domain. The N-terminal 220 amino acids are highly conserved and are also known to mediate dimerization of NF1 proteins. The C-terminal regions of different type of NF1 proteins are heterogeneous and responsible for transcriptional activation. In this study, we tested the interaction between different domains of rat NF1-A protein by yeast two hybrid analysis and observed the interaction between C-terminal regions of NF1-A which do not contain the N-terminal dimerization domain. Our results showed that the C-terminal region of rat NF1-A between residues 231 and 509 strongly interacted not only with itself, but also with human NF1/CTF1 which is a different type of NF1. When the C-terminal region was divided into two fragments, one from residue 231 to 447 and the other from 448 to 509, the two fragments were able to interact with the C-terminal region of NF1-A significantly. This indicates that both fragments contain independent interaction domains. Analysis of the interactions with alanine substituted fragments showed that substitutions of the heptasequence, SPTSPTY of NF1-A, affected interaction between NF1 proteins. Our results strongly suggest that C-terminal regions may also be important for the formation of homo- and heterodimers in addition to the N-terminal dimerization domain. Also, the heptasequence motif may play some roles in dimer formation.

  • PDF

대두 $\beta$- Amylase의 N-말단 아미노산 배열 (N-Terminal Sequence of Soybean $\beta$- Amylase)

  • 지의상;김관묵;김준평
    • 한국식품영양학회지
    • /
    • 제4권2호
    • /
    • pp.161-166
    • /
    • 1991
  • The blocked N-terminus and N-terminal sequence of soybean B-amylase were aetermined by analyzing the acidic peptides derived on peptic digestion of the enzyme. The acidic peptides were separated from the digest on a Dowex 50$\times$2 column(1X5cm) and purified by reversed phase-high performance liquid chromatography(RP-HPLC). The major acidic peptide, PEP-1, was a heptapeptlde. The N-terminal 7 amino acid sequence of soybean B-amylase was deduced to be acetyl-Ala-Thf-Ser-Asp-Ser-Asn-Met- from the results of sequence analysis of PEP-1 and amino acid analysis of other acidic peptides.

  • PDF

Genetic Organization of the hrp Genes Cluster in Erwinia pyrifoliae and Characterization of HR Active Domains in HrpNEp Protein by Mutational Analysis

  • Shrestha, Rosemary;Park, Duck Hwan;Cho, Jun Mo;Cho, Saeyoull;Wilson, Calum;Hwang, Ingyu;Hur, Jang Hyun;Lim, Chun Keun
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.30-42
    • /
    • 2008
  • The disease-specific (dsp) region and the hypersensitive response and pathogenicity (hrp) genes, including the hrpW, $hrpN_{Ep}$, and hrpC operons have previously been sequenced in Erwinia pyrifoliae WT3 [Shrestha et al. (2005a)]. In this study, the remaining hrp genes, including the hrpC, hrpA, hrpS, hrpXY, hrpL and hrpJ operons, were determined. The hrp genes cluster (ca. 38 kb) was comprised of eight transcriptional units and contained nine hrc (hrp conserved) genes. The genetic organization of the hrp/hrc genes and their orientation for the transcriptions were also similar to and collinear with those of E. amylovora, showing ${\geq}80%$ homologies. However, ORFU1 and ORFU2 of unknown functions, present between the hrpA and hrpS operons of E. amylovora, were absent in E. pyrifoliae. To determine the HR active domains, several proteins were prepared from truncated fragments of the N-terminal and the C-terminal regions of $HrpN_{Ep}$ protein of E. pyrifoliae. The proteins prepared from the N-terminal region elicited HR, but not from those of the C-terminal region indicating that HR active domains are located in only N-terminal region of the $HrpN_{Ep}$ protein. Two synthetic oligopeptides produced HR on tobacco confirming presence of two HR active domains in the $HrpN_{Ep}$. The HR positive N-terminal fragment ($HN{\Delta}C187$) was further narrowed down by deleting C-terminal amino acids and internal amino acids to investigate whether amino acid insertion region have role in faster and stronger HR activity in $HrpN_{Ep}$ than $HrpN_{Ea}$. The $HrpN_{Ep}$ mutant proteins $HN{\Delta}C187$ (D1AIR), $HN{\Delta}C187$ (D2AIR) and $HN{\Delta}C187$ (DM41) retained similar HR activation to that of wild-type $HrpN_{Ep}$. However, the $HrpN_{Ep}$ mutant protein $HN{\Delta}C187$ (D3AIR) lacking third amino acid insertion region (102 to 113 aa) reduced HR when compared to that of wild-type $HrpN_{Ep}$. Reduction in HR elicitation could not be observed when single amino acids at different positions were substituted at third amino acids insertion region. But, substitution of amino acids at L103R, L106K and L110R showed reduction in HR activity on tobacco suggesting their importance in activation of HR faster in the $HrpN_{Ep}$ although it requires further detailed analysis.

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • 한국자기공명학회논문지
    • /
    • 제22권1호
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

Analysis of the functional domains of CFTase gene cloned from Xanthomonas oryzae #5 using recombinant deletion mutant

  • 김병우;유동주;류혜경;박주희
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.727-730
    • /
    • 2001
  • Xanthomonas oryzae #5로부터 클로닝 된 CFTase 의 functional domain의 분석을 위해 CFTase의 recombinant deletion mutant를 구성하고, recombinant protein을 분리, 정제하였다. 분리, 정제한 recombinant protein의 활성을 측정한 결과 C-terminal이 deletion 된 mutant는 cyclization 반응이 소실 되었다. 이와 같은 결과로부터 CFTase의 C-terminal 은 cyclization 반응의 중요한 functional domain 이다.

  • PDF

Purification and Characterization of Cop, a Protein Involved in the Copy Number Control of Plasmid pE194

  • Kwak, Jin-Hwan;Kim, Jung-Ho;Kim, Mu-Yong;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • 제21권3호
    • /
    • pp.291-297
    • /
    • 1998
  • Cop protein has been overexpressed in Escherichia coli using a T7 RNA polymerase system. Purification to apparent homogeneity was achieved by the sequential chromatography on ion exchange, affinity chromatography, and reverse phase high performance liquid chromatography system. The molecular weight of the purified Cop was estimated as 6.1 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). But the molecular mass of the native state Cop was shown to be 19 kDa by an analytical high performance size exclusion chromatography, suggesting a trimer-like structure in 50 mM Tris-HCI buffer (pH 7.5) containing 100 mM NaCl. Cop protein Was calculated to contain $39.1% {\alpha}-helix, 16.8% {\beta}-sheet$, 17.4% turn, and 26.8% random structure. The DNA binding property of Cop protein expressed in E. coli Was preserved during the expression and purification process. The isoelectric point of Cop was determined to be 9.0. The results of amino acid composition analysis and N-terminal amino acid sequencing of Cop showed that it has the same amino acid composition and N-terminal amino acid sequence as those deduced from its DNA sequence analysis, except for the partial removal of N-terminal methionine residue by methionyl-aminopeptidase in E. coli.

  • PDF

Redundancy Analysis Demonstration of the Relevance of Temperature to Ammonia-Oxidizing Bacterial Community Compositions in a Full-Scale Nitrifying Bioreactor Treating Saline Wastewater

  • Park, Hee-Deung;Lee, Seung-Yong;Hwang, Seok-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권4호
    • /
    • pp.346-350
    • /
    • 2009
  • Although salt is known to influence the performance of nitrification significantly, it has not been well reported on how salt affects ammonia-oxidizing bacterial(AOB) community compositions and dynamics in wastewater treatment bioreactors. In this study, these questions were evaluated in a full-scale bioreactor treating saline wastewater. Clone library analysis for the ammonia monooxygenase subunit A gene revealed that AOB belonging to the Nitrosomonas europaea and the N. oligotropha lineages inhabited in the bioreactor. Terminal restriction fragment length polymorphism analysis for monthly samples demonstrated a fluctuation pattern among AOB populations, although AOB within the N. europaea lineage were dominant during the test period. Correlation analysis between patterns of terminal restriction fragments and environmental variables suggested that sodium, chloride, and sulfate were less important; rather, temperature was the most significant factor affecting the AOB community in the bioreactor.

Molecular and Biochemical Studies on the DNA Replication of Bacteriophage T7: Functional Analysis of Amino-terminal Region of Gene 2.5 Protein

  • Kim, Young-Tae;Lee, Sung-Gu;Kim, Hak-Jun
    • BMB Reports
    • /
    • 제28권6호
    • /
    • pp.484-489
    • /
    • 1995
  • The product of bacteriophage T7 gene 2.5 is a single-stranded DNA binding protein and plays an important role in T7 DNA replication, recombination, and repair. Genetic analysis of T7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth (Kim and Richardson, 1993). The C-terminal truncated gene 2.5 protein ($GP2.5-{\Delta}21C$) cannot substitute for wild-type gene 2.5 protein in vivo; suggesting that the C-terminal domain of gene 2.5 protein is essential for protein-protein interactions (Kim and Richardson, 1994; J. Biol. Chem. 269, 5070-5078). Truncated gene 2.5 proteins lacking 19 residues ($GP2.5-{\Delta}19N$) and 39 residues ($GP2.5-{\Delta}39N$) from the amino-terminal domain were constructed by in vitro mutagenesis. $GP2.5-{\Delta}19N$ can support the growth of T7 phage lacking gene 2.5 while $GP2.5-{\Delta}39N$ cannot substitute for wild-type gene 2.5 protein in vivo; however, its ability to bind to single-stranded DNA is not affected. These results clearly demonstrate that the 20~39 amino-terminal region of gene 2.5 protein is required for T7 growth in vivo but may not be involved in DNA binding activity.

  • PDF