• Title/Summary/Keyword: N-subalgebra (ideal)

Search Result 13, Processing Time 0.015 seconds

CONSTRUCTION OF QUOTIENT BCI(BCK)-ALGEBRA VIA A FUZZY IDEAL

  • Liu, Yong-Lin;Jie Meng
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.51-62
    • /
    • 2002
  • The present paper gives a new construction of a quotient BCI(BCK)-algebra X/${\mu}$ by a fuzzy ideal ${\mu}$ in X and establishes the Fuzzy Homomorphism Fundamental Theorem. We show that if ${\mu}$ is a fuzzy ideal (closed fuzzy ideal) of X, then X/${\mu}$ is a commutative (resp. positive implicative, implicative) BCK(BCI)-algebra if and only if It is a fuzzy commutative (resp. positive implicative, implicative) ideal of X Moreover we prove that a fuzzy ideal of a BCI-algebra is closed if and only if it is a fuzzy subalgebra of X We show that if the period of every element in a BCI-algebra X is finite, then any fuzzy ideal of X is closed. Especiatly, in a well (resp. finite, associative, quasi-associative, simple) BCI-algebra, any fuzzy ideal must be closed.

A COUPLED 𝒩-STRUCTURE WITH AN APPLICATION IN A SUBTRACTION ALGEBRA

  • Williams, D.R. Prince;Ahn, Sun Shin;Jun, Young Bae
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.863-884
    • /
    • 2014
  • In this paper, we introduce a coupled $\mathcal{N}$-structure which is the generalization of $\mathcal{N}$-structure. Using this coupled $\mathcal{N}$-structure, we have applied in a subtraction algebra and have introduced the notion of a coupled $\mathcal{N}$-subalgebra, a coupled $\mathcal{N}$-ideal. Also the characterization of coupled $\mathcal{N}$-ideal is presented.

LEFT-INVARIANT FLAT RIEMANNIAN STRUCTURES ON LIE GROUPS

  • Park, Kyeong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.453-459
    • /
    • 2004
  • A left-invariant flat Riemannian connection on a Lie group makes its Lie algebra a left symmetric algebra compatible with an inner product. The left symmetric algebra is decomposed into trivial ideal and a subalgebra of e(l). Using this result, the Lie group is embedded isomorphically into the direct product of O(l) $\times$ $R^{k}$ for some nonnegative integers l and k.