• 제목/요약/키워드: N-removal

검색결과 2,213건 처리시간 0.032초

호기성 고율 안정조에서 빛의 조사 기간과 pH가 조류의 영양물질 제거에 미치는 영향 (Effect on Nutrients Removal of Algae in Aerobic High Rate Pond by Irradiance Period and pH)

  • 공석기;안승구
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.141-152
    • /
    • 1997
  • The pilot plant had been made so as to be an association system from the various items managed to have degrees of efficiency and It have been done to consider the experimental result with irradiance period and pH influence of all major things to treatment function of Waste Stabilization Pond. The results are as following. The attained results for continuous & cyclic irradiance 1. 24L.-reactor was prior to 12L.-12D.-reactor on oxygen generation & algal production ability. 2. 24L.-reactor was prior to 12L.-12D.-reactor on nutrients removal efficiency. 3. In 24L.-reactor it maintained 5mg/L∼6mg/L, DO concent enough to a fish's survival. The attained results for pH condition 1. Oxygen generation ^ algal production in pH 4-reactor were higher than those in pH 10-reactor. 2. The acidic condition at pH 4 and alkalic condition at pH 10 did not so much affect an algal growth and nutrients removal. The attained results for whole 1. In view of the results appeared as [(NH3-N)+(NO3-N)] removal efficiency, 89.1%∼93.9% and PO4-P removal efficiency, 34.3%∼83.7% & COD removal efficiency, 88.5%∼93.9%. It is possible to treat the wastewater with starch and pH which have been known as thedifficult problem. 2. At the point of non using methanol to nitrificate NO3-N, the nutrients removal method by using an algal growth is the most economical method in the whole nutrients removal methods. 3. The nutrients removal method by using an algal growth contributes to natural ecosystem. 4. The nutrients removal method by using an algal growth is excellant in the prevention against the eutrophication.

  • PDF

무산소-혐기-호기법에서 유기기질제거와 질산화의 동역학적 해석 (The Kinetic Analysis on Organic Substrate Removal and Nitrification in Anoxic-Anaerobic-Aerobic Process)

  • 채수권
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.689-696
    • /
    • 2007
  • Kinetic analysis was important to develope the biological nutrient removal process effectively. In this research, anoxic-anaerobic-aerobic system was operated to investigate kinetic behavior on the nutrient removal reaction. Nitrification and denitrification were important microbiological reactions of nitrogen. The kinetics of organic removal and nitrification reaction have been investigated based on a Monod-type expression involving two growth limiting substrates : TKN for nitrification and COD for organic removal reaction. The kinetic constans and yield coefficients were evaluated for both these reactions. Experiments were conducted to determine the biological kinetic coefficients and the removal efficiencies of COD and TKN at five different MLSS concentrations of 5000, 4200, 3300, 2600, and 1900 mg/L for synthetic wastewater. Mathematical equations were presented to permit complete evaluation of the this system. Kinetic behaviors for the organic removal and nitrification reaction were examined by the determined kinetic coefficient and the assumed operation condition and the predicted model formulae using kinetic approach. The conclusions derived from this experimental research were as follows : 1. Biological kinetic coefficients were Y=0.563, $k_d=0.054(day^{-1})$, $K_S=49.16(mg/L)$, $k=2.045(day^{-1})$ for the removal of COD and $Y_N=0.024$, $k_{dN}=0.0063(day^{-1})$, $K_{SN}=3.21(mg/L)$, $k_N=31.4(day^{-1})$ for the removal of TKN respectively. 2. The predicted kinetic model formulae could determine the predicted concentration of the activated sludge and nitrifier, investigate the distribution rate of input carbon and nitrogen in relation to the solid retention time (SRT).

전기분해에 의한 고농도 질소 제거의 특성 (Removing High Concentration Nitrogen by Electrolysis)

  • 길대수;이병헌;최해경;권동민
    • 대한환경공학회지
    • /
    • 제22권2호
    • /
    • pp.265-277
    • /
    • 2000
  • 전기분해에 의한 암모니아의 제거 특성을 조사하기 위한 실험을 수행하였다. 양극판은 티타늄에 이산화이리듐을 전착한 $IrO_2/Ti$ 극판으로 하였으며, 음극판은 스테인리스 스틸판을 사용하였다. 전류밀도, 체류시간, 전극간격 및 $Cl^-/NH_4{^+}-N$ 비 등의 운전조건에 대한 암모니아 제거 특성을 조사하여 전기분해의 최적 운전조건을 결정하였다. 판형태의 양극판과 망형태의 양극판을 사용하여 동일 전류밀도에서 암모니아의 처리효과는 비슷한 것으로 나타났으나, 유효 극판면적이 적은 망형태의 극판을 사용함으로써 전력비를 감소할 수 있었다. 암모니아성 질소에 대한 염소첨가비 $20.0kgCl^-/kgNH_4{^+}-N$에서 약 73 %의 제거율을 보였으며, 암모니아를 완전히 제거하는데 $27.6kgCl^-/kgNH_4{^+}-N$이 필요하였다. 암모니아의 제거는 전류밀도, 체류시간 및 $Cl^-/NH_4{^+}-N$ 비에 따라 높았으며, 전극간격은 좁을수록 효과적인 것으로 나타났다. 운전인자와 암모니아 제거율과의 관계는 아래와 같이 나타났다. $$NH_4{^+}-N_{re}(%)=14.5364(Current\;density)^{0.7093}{\times}(HRT)^{1.0060}{\times}(Gap)^{-0.9926}{\times}(Cl^-/NH_4{^+}-N)^{1.0024}$$ COD와 알칼리도를 첨가한 경우 암모니아 제거는 더 높게 나타났으며, 운전인자와의 관계식은 아래와 같이 나타났다. $$NH_4{^+}-N_{re}(%)=9.8408(Current\;density)^{0.6232}{\times}(HRT)^{1.0534}$$ 유기물질과 질소를 동시에 전기분해할 경우 두 물질간은 경쟁관계에 있으며, 암모니아 제거가 지배적인 것으로 나타났다. 암모니아 제거는 유기물질 및 알칼리도를 주입함으로써 높게 나타났다.

  • PDF

침지형 membrane을 이용한 생활오수처리 (Municipal Wastewater Treatment by Submerged Membrane Process)

  • 김광남;정순형;정우영;윤용수
    • 환경위생공학
    • /
    • 제14권2호
    • /
    • pp.105-112
    • /
    • 1999
  • The removal characteristic of BOD, COD,T-N, and T-P was investigated in municipal wastewater treatment with anoxic and membrane submerged aerobic reactor. It was found that BOD and COD removal rate were obtained 90% and 92%, respectively, for 90 days operation. BOD and COD loading rate did not affect to the removal efficiency because MLSS concentration in aerobic tank was highly maintained.In the case of first reactor operated with anoxic and second reactor operated as aerobic, T-N, T-P removal rate were obtained 93% and 99% respectively.It was shown that removal efficiency could be maintained stable due to the complete removal of SS and sludge production decreased with increasing of sludge retention time.

  • PDF

간헐폭기식 활성슬러지 공법에 의한 질소, 인 제거 (Removal of N and P by Intermittented Aeration Activated Sludge Process)

  • 김동밀;이영신
    • 한국환경보건학회지
    • /
    • 제18권2호
    • /
    • pp.57-61
    • /
    • 1992
  • This study was made for enhanced removal of N and P by intermittented aeration Activated Sludge Process. Experiment were conducted to find the effects of aeration interval and nutrient removal efficiency. When applied aeration interval were 30~60 min, 2~4 h, 4~8 h, organic matter was not affected while phosphorous removal was aeration interval 30~60 min. Also, when applied mixing intensity were 15, 30, 45 and 60 rpm, organic matter was not affected while removal was maximum at 15 rpm. Total nitrogen and phosphorous removal were in the range of 76 and 85%. Density and MLSS of Sludge were in the range of 2.3~2.6 and 7198~7810 mg/l. Release of phosphorous from activated sludge under unaerobic condition was increased as pass time.

  • PDF

RO 농축수 처리를 위한 SBR과 MLE 공정의 비교 평가 (A comparative study on SBR and MLE Process for RO Retentate Treatment)

  • 김일회;이상일
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.907-915
    • /
    • 2011
  • In this study, the SBR and MLE process was performed for a removal of the RO retentate and the nitrogen removal efficiency was evaluated. The inflow-rate of two processes was set a 10 L/day. The SBR process was operated a two cycle as HRT per one cycle was 12hr and the HRT of the anoxic and aerobic tank was respectively 7.5 hr and 16.5 hr. The methanol was injected for an effective denitrificaion owing to a low C/N ratio of the RO retentate. The two processes were effectively performed for nitrogen removal, but the average removal efficiency of the SBR process was about 94.93% better performance than the MLE process. Therefore, the SBR process demonstrated a good performance more than the MLE process for nitrogen removal of the RO retentate. The kinetic of SNR and SDNR was observed respectively 0.051 kg $NH_{3}-N/kg\;MLVSS{\cdot}dayg$ and 0.287 kg ${NO_3}^--N/kg\;MLVSS{\cdot}day$, which will be useful to design for the wastewater treatment system with a RO retentate.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2019년도 정기학술대회 발표논문집
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

갯버들(Salix gracilistyla Miq.)의 질소와 인 제거능 (Removal of Nitrogen and Phosphorus by Salix gracilistyla Miq.)

  • 신정이;차영일
    • 환경생물
    • /
    • 제17권4호
    • /
    • pp.449-457
    • /
    • 1999
  • 경기도 양평군 수입천에서 대형 군락을 형성하여 자생하는 갯버들의 영양염류의 농도와 수리학적체류시간에 따른 질소.인 흡수 실험 결과로서 NH$_4$-N, NO$_3$-N, PO$_4$-P제거효율은 저농도에서 체류 시간이 길 때 높은 경향을 보였고, 제거능은 고농도와 짧은 체류시간에서 높은 경향으로 나타났다. 유입농도와 체류시간에 따른 지상부 1g당 제거능 추정식을 구하였다. 수입천 갯버들의 현존량은 4,880.81g/$m^2$로 추정되었고, 현존량과 제거능 추정식으로부터 자연정화량을 추정하였는데, 수입교부터 노문교까지 6km 구간에서 하천양안을 합쳐 10m 폭의 갯버들의 분포에 대해 체류시간 0.59~5.21이며 NH$_4$-N의 유입농도가 0.05~0.4, mg/L 일 때 제거능추정값은 0.49~15.49 kg/day, NO$_3$-N의 유입수의 농도가 1.42~11.36mg/L 일 때 5.83~405.39 kg/4ay, PO$_4$-P 유입수의 농도가 0.1~0.27 mg/L 일 때 7.57~23.22 kg/day로 나타났다.

  • PDF

포토레지스트 공정에서 높은 선택성을 가지는 초임계 이산화탄소/n-butyl acetate 공용매 시스템 연구 (Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process)

  • 김동우;허훈;임권택
    • 청정기술
    • /
    • 제23권4호
    • /
    • pp.357-363
    • /
    • 2017
  • 본 연구에서는 초임계 이산화탄소/n-butyl acetate ($scCO_2$/n-BA) 공용매를 사용하여 네거티브형 포토레지스트(PR)를 제거하는 실험을 진행하였다. $scCO_2$와 n-BA의 용해도 평가를 통해 n-BA가 $scCO_2$와 균일하게 섞이는 조건을 실험적으로 측정하였다. 다양한 실험 변수를 조정하여 포토레지스트 제거 실험을 진행하였고, 미노광 포토레지스트 제거에 대한 최적의 조건을 확립하였다. 또한, 노광된 PR과 미노광 PR의 제거율을 비교하여 $scCO_2$/n-BA 공용매의 선택적 제거 성능을 확인하였다. 노광된 PR은 $scCO_2$/n-BA 공용매 환경에서 매우 안정적으로 존재함을 관찰하였고, 미노광 PR은 160 bar, $40^{\circ}C$, 75 wt% n-BA 이상의 농도에서 완전히 제거됨을 확인하였다. $scCO_2$/n-BA 공용매 시스템은 노광 PR과 미노광 PR 사이의 높은 선택성을 제공할 수 있으며, 네거티브 PR의 리소그래피 공정에서 높은 신뢰성을 부여할 것으로 기대된다.

수생식물을 이용한 담수 순환여과식 양식용수내의 무기영양염 처리 효율 (Inorganic Nutrient Removal Efficiency of Aquatic Plants from Recirculating Aquaculture System)

  • 마진석;오승용;조재윤
    • 한국양식학회지
    • /
    • 제16권3호
    • /
    • pp.171-178
    • /
    • 2003
  • Inorganic nutrients such as nitrogen and phosphate compounds accumulate in recirculating aquaculture systems. These nutrients must be removed from the system before they affect pH and fish health. For this purpose, aquatic plants are a simple and inexpensive method of removal. There are four commonly used aquatic plants: Eichhornia crassipes (water hyacinth), Pistia stratiotes (water lettuce), Hygrophila angustifolia, and Hydrocotyle leucocephala in freshwater recirculating aquaculture systems in Korea, but their efficiencies are not known. Therefore, removal efficiencies of inorganic nutrients from a freshwater recirculating aquaculture water with four commonly used aquatic plants were tested. Removing efficiencies of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N of the plants in 210 L aquaria for 48-hour period were tested. The removing efficiencies of TAN, N $O_3$$^{[-10]}$ -N, and P $O_4$$^{3-}$-P of the two most effective plants, water hyacinth and water lettuce, were also tested in 690 L (surface area of 1.55 $m^2$) tanks under 2 different initial stocking densities, 4 kg and 6 kg, for 22 days. Proximate analysis major nutrients and N and P contents of the all plants were analyzed for calculating net removal weight of N and P by the plants. Water lettuce was the most effective for removing TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N from the water for 48-hour period tested followed by water hyacinth and Hygrophila angustifolia. Water lettuce reduced TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N concentration from 2.3 mg/L, 0.197 mg/L, and 21.4 mg/L to 0.4 mg/L, 0.024 mg/L and 17.4 mg/L, respectively while water hyacinth reduced them down to 0.6 mg/L, 0.029 mg/L and 17.9 mg/L, respectively. The concentrations of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N in Hydrocotyle leucocephala group were rather increased up to 3.7 mg/L, 5.7 mg/L and 48.2 mg/L, respectively. This is because the creeping stem of Hydrocotyle leucocephala had to be cut to meet stocking weight resulting in decaying of the stem in the aquaria during experiment. The net growth in weight of water hycinth and water lettuce of 4 kg each in the 1.55 $m^2$ tanks for 22 days were 9.768 kg and 10.803 kg respectively, and those at initial weight of 6 kg each were 8.393 kg and 9.433 kg, respectively. The reason of lower net growth in the later group was restricted growth space. Nitrogen and phosphorus contents in water hyacinth were 2.89% and 0.27%, and those in water lettuce were 3.87% and 0.36%, respectively. Average quantities of removed N and P from 1.55 $m^2$ tanks by water hyacinth for 22 days were 18.9 g and 1.75 g, while those by water lettuce were 36.8 g and 3.5 g, respectively. Therefore water lettuce showed much higher efficiencies for removing both N and P from recirculating aquaculture water than water hyacinth.