• Title/Summary/Keyword: N-methyl

Search Result 2,000, Processing Time 0.032 seconds

Synthesis and in Vitro Stability Evaluations of 5-(2'-(N-(1-methyl-3'-carbamylphenyl)-n-propyl))aminoethyl)-8-hydroxy-4-methylcarbostyril Derivatives (5-(2'-(N-(1-메틸-3-(3'-카바밀페닐)-n-프로필))아미노에틸)-8-히드록시-4- 메틸카보스티릴 유도체의 합성 및 안정성 연구)

  • 윤성화;박규순
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.506-510
    • /
    • 1995
  • The 5-(2'-(N-(1-methyl-3'-carbamylphenyl)-n-propyl))aminoethyl)-8- hydroxy-4-methyl-carbostyril derivatives which have isoelectronic and isosteric structural similarity with dobutamine without having the Catechol-O-Methyltransferase (COMT) vulnerable m-hydroxy group were synthesized via 7 synthetic steps, and their stabilities in phosphate buffer solution(pH=7.4), human blood. 80% human plasma and 20% rat liver homogenate were determined in vitro condition.

  • PDF

A Study on Spin-Lattice Relaxation of Methyl Protons in 2,6-Dichlorotoluene and N-Methyl Phthalimide

  • Lee, Jo-Woong;Lim, Man-Ho;Rho, Jung-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.47-51
    • /
    • 1991
  • Spin-lattice relaxation of methyl protons in 2,6-dichlorotoluene and N-methyl phthalimide, each dissolved in CDCl$_3$, has been studied at 34$^{\circ}$C and the contribution from spin-rotation interaction to the relaxation process has been separated from that due to dipole-dipole interactions among methyl protons. The results show that the spin-rotational contributions to the initial rate of relaxation in 2,6-dichlorotoluene and N-methyl phthalimide amount to 18 and 31%, respectively, of the total relaxation rate at 34$^{\circ}$C. The method of separating the spin-rotational contribution from that of dipolar interactions adopted in this paper is based on the well known fact that in an A$_3$ spin system such as methyl protons in liquid phase dipolar relaxation mechanism gives non-exponential decay of the z-component of total magnetization of protons while the random field fluctuation such as spin-rotational mechanism causes exponential decay.

The Molecular Complexes (ⅩI). The Complexes of Toluidines and N-Methyltoluidines with Iodine in Carbon Tetrachloride

  • Choi, Sang-Up;Rhee, Myung-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.3
    • /
    • pp.75-78
    • /
    • 1980
  • The interactions of iodine with toluidines (o-, m-, and p-) and N-methyltoluidines (o-, m-, and p-) in $CCl_4$ solution have been investigated through spectrophotometric measurements. The results indicate that toluidines and N-methyltoluidines form the one-to-one charge-transfer complexes with $I_2$ in solution. By comparing the values of the formation constants of the complexes, it is concluded that the relative stabilities of the $I_2$-amine complexes decrease in the following orders: p-toluidine >m-toluidine >aniline >o-toluidine, N-methyl-p-toluidine >N-methyl-m-toluidine >N-methylaniline >N-methyl-o-toluidine, N-methyltoluidines >toluidines. These results can be explained by the electron-releasing character and the steric effect of methyl group in the amine molecules.

Decolorization and Biotransformation of Triphenylmethane Dye, Methyl Violet, by Aspergillus sp. Isolated from Ladakh, India

  • Kumar, C. Ganesh;Mongolla, Poornima;Basha, Anver;Joseph, Joveeta;Sarma, V.U.M.;Kamal, Ahmed
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.267-273
    • /
    • 2011
  • Methyl violet, used extensively in the commercial textile industry and as a biological stain, is a hazardous recalcitrant. Aspergillus sp. strain CB-TKL-1 isolated from a water sample from Tsumoriri Lake, Karzok, Ladakh, India, was found to completely decolorize methyl violet within 24 h when cultured under aerobic conditions at $25^{\circ}C$. The rate of decolorization was determined by monitoring the decrease in the absorbance maxima of the dye by UV-visible spectroscopy. The decolorization of methyl violet was optimal at pH 5.5 and $30^{\circ}C$ when agitated at 200 rpm. Addition of glucose or arabinose (2%) as a carbon source and sodium nitrate or soyapeptone (0.2%) as a nitrogen source enhanced the decolorization ability of the culture. Furthermore, the culture exhibited a maximum decolorization rate of methyl violet after 24 h when the C:N ratio was 10. Nine N-demethylated decolorized products of methyl violet were identified based on UV-visible spectroscopy, Fourier transform infrared (FTIR), and LC-MS analyses. The decolorization of methyl violet at the end of 24 h generated mono-, di-, tri-, tetra-, penta-, and hexa-N-demethylated intermediates of pararosaniline. The variation of the relative absorption peaks in the decolorized sample indicated a linear decrease of hexa-N-demethylated compounds to non-N-demethylated pararosaniline, indicating a stepwise N-demethylation in the decolorization process.

Environmental and biological monitoring of workers exposed to methyl bromide through quarantine fumigation (방역작업자의 브롬화메틸(methyl bromide) 노출수준과 생물학적 모니터링)

  • Lee, Jong-Seong;Lee, Yong-Hag;Shin, Jae-Hoon;Choi, Jung-Keun;O, Cha-Jae;Jung, Ho-Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.212-218
    • /
    • 2001
  • This study was performed to estimate environmental and biological monitoring of workers exposed to methyl bromide through quarantine fumigation. Airborne methyl bromide and it's metabolites were analyzed by gas chromatography and ion chromatography, respectively. The results are as followings; airborne concentration of methyl bromide(TWA) was $2.08{\pm}1.56ppm$(N=8). Dispersion and setting/degas groups were $0.67{\pm}0.12ppm$(N=2) and $2.54{\pm}1.53ppm$(N=6), respectively. Bromide ion concentration in serum was $23.40{\pm}14.91mg/{\ell}$(N=10) in the exposed workers and $4.74{\pm}0.82mg/{\ell}$(N=21) in the non-exposed workers. Bromide ion concentration in urine was $35.56{\pm}26.89mg/{\ell}$(N=11) in exposed group and $6.62{\pm}2.31mg/{\ell}$(N=21) in non-exposed group. Good correlation was observed between concentration of serum and urine ($r^2$=0.890 p<0.01). No significant correlations of other determinants were observed. Calculated from a regressive curve, the biological half lifes of serum and urine were 10.7 and 5.9 days. In these results, biological monitoring of bromide ion of serum and urine provided useful information for evaluating exposure of workers to methyl bromide, so that an availability of bromide ion of biological samples was showed as biological monitoring indices for methyl bromide.

  • PDF

Studies on the Surfactants of the N-Acyl Amino Acid(part 9) -The Effect of Temperature and Electrolytes on the Micellization of Sodium N-Lauroyl-N-Methyl-Taurate- (N-아실 아미노산계 계면활성제에 관한 연구(제9보) -Sodium N-Lauroyl-N-methyl-taurate의 미셀형성에 대한 온도 및 전해질의 영향-)

  • Kim, Jin-Hyun;Kim, Tae-Young;Ju, Myung-Jong;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.401-409
    • /
    • 1996
  • The effect of temperature on the cmc of sodium N-lauroyl-N-methyl taurate was examined. The cmc values were found to be decreased initially but increased further with the increase of temperature. From the temperature dependence of cmc, various thermodynamic properties were calculated. The effects of various electrolytes on the cmc of sodium N-lauroyl-N-methyl-taurate were also examined. The free energy of hydrophobic bond formation and the degree of dissociation of the micelles were calculated from log cmc vs. log counter ion concentration plots. The ${\Delta}H_m$ values were decreased with increasing the temperature and changed their signs from plus to minus at $40^{\circ}C{\sim}50^{\circ}C$. The ${\Delta}G_m$ values were decreased with the increase of electrolyte concentration and temperature.

  • PDF

Studies on the Synthesis of Nonionic Surfactants (III). Kinetics of the Synthesis of Sucrose Esters (비이온성 계면활성제의 합성에 관한 연구 (제3보). 슈크로오스에스테르의 합성에 관한 동력학적 고찰)

  • Ki Dae Nam;Joo Hwan Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.283-290
    • /
    • 1981
  • The reaction rates for the transesterification reaction were measured on the excess sucrose with the five fatty acid methyl ester systems such as methyl laurate, methyl myristate, methyl palmitate, methyl stearate and methyl oleate at temperature range of $50^{\circ}C$ to $90^{\circ}C$ in N,N-dimethylformamide solvent and potassium carbonate as a catalyst. Their activation parameters as well as rate constants were calculated from these measurements. And these reactions were found to be pseudo-first order and depended mainly on the structural changes in fatty acid residue of methyl esters. Also their reactions were found to be of enthalpy-controlled, which were disfavored in the order of methyl laurate, methyl myristate, methyl palmitate, methyl oleate and methyl stearate. Correspondingly their activation energies were 9.3, 9.9, 10.3, 10.9 and 11.1 kcal/mole, respectively.

  • PDF

N-Acyl Amino Acid Surfactant(12) The Effectual Acylation and Their Surface Active Properties of N-Methyl Taurine (N-아실아미노산계 계면활성제(제12보) N-Methyl Taurine의 효율적 아실화 반응 및 계면성)

  • Kwack, Kwang-Soo;Yoon, Young-Kyoon;Jeong, Noh-Hee;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.94-98
    • /
    • 2000
  • Sodium N-acyl N-methyl taurates were synthesized by effectual acylation of fatty acid ethyl esters $C(C_{12}{\sim}C_{18})$ and N-methyl taurine. All the surface activities including krafft point, solubility, interface tension, foaming power, lime-soap dispersing ability and detergency were measured, and cmc was evaluated in dilute aqueous solution.

Synthesis of New N,N,O Tridentate Ligands and Determination of Stability Constants of Transition Metal Complexes by Potentiometry (새로운 N,N,O계 세 자리 리간드의 합성과 전위차적정법에 의한 전이금속 착물의 안정도상수의 결정)

  • Kim, Sun-Deuk;Lee, Do-Hyub
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.799-809
    • /
    • 2006
  • Hydrobromic acid salts of new N, N, O tridentate ligands containing phenol, 2-[(2-Methylamino- ethyl- amino)-methyl]-phenol(H-MMP. 2HBr), 5-Bromo-2-[(2-Methylamino-ethylamino)-methyl]-phenol (Br- MMP. 2HBr), 5-Chloro-2-[(2-Methylamino-ethylamino)-methyl]-phenol(Cl-MMP. 2HBr), 5-Methyl-2-[(2-Methylamino-ethylamino)-methyl]-phenol(Me-MMP. 2HBr), 5-Methoxy-2-I(2-Methylamino-ethylamino)- methyl]-phenol(MeO- MMP. 2HBr) and. 1-[(2-Methylamino-ethylamino)- methyl]-naphthalen-2-ol(Nap- MMP. 2HBr) were synthesized. The synthesized ligands were confirmed by C. H. N. atomic analysis, UV-visible and IR spectroscopies, $^1$H NMR, $^{13}$C NMR and mass analysis. The potentiometry study revealed that the proton dissociation constants(logK$_n^H$) of the synthesized ligands and stability constants (logK$_{ML}$, logK$_{LM2}$) of transition metal complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) ions occurred in three steps and the order of the calculated overall proton dissociation constants(log$\beta_p$) and stability constants (logK$_{ML}$) of ligands was Br-MMP. 2HBr < Cl-MMP 2HBr < H-MMP. 2HBr < Nap-MMP. 2HBr < Me-MMP. 2HBr < MeO-MMP. 2HBr. The order showed a similar trend to that of Hammett substituent constants($\delta_p$). The synthesized ligands usually form 2:1(ML$_2$) complexes with transition metal ions. The order of the stability constants of each transition metal ions was Co(II) < Ni(II) < Cu(II) ;> Zn(II) ;> Cd(II) ;> Pb(II).