• Title/Summary/Keyword: N-ethylmaleimide

Search Result 64, Processing Time 0.028 seconds

Effect of Red Ginseng Saponins on Intestinal Contractility (장평활근의 수축성에 대한 홍삼 Saponins의 효과)

  • 신동호;오정이
    • Journal of Ginseng Research
    • /
    • v.22 no.3
    • /
    • pp.200-205
    • /
    • 1998
  • Isolated rabbit jejunal segments were used to study the effects of ginseng total saponins (GTS) , protopanaxatriol saponins (PT) and protopanaxadiol saponins (PD) on intestinal contractility. GTS, PT and PD caused a dose-dependent decrease in intestinal spontaneous movements, and PT was the most efficacious of them. The effect of GTS, PT and PD were not blocked by pretreatment with phentolamine (10-6 M), yohimbine (10-6 M), d1-propranolol (10-6 M), naloxone(10-6∼10-5M), Nu-nitro-L-arginine methyl ester (10-4 M), methylene blue (10-5M), and N-ethylmaleimide (10-4 M). However, pretreatment with tetraethylammonium chloride (3-10 mM) antagonized the effect of GTS, PT and PD. Furthermore, 4-amlnopyridine (1 mM) also inhibited the effect of GTS, PT and PD. The results suggest that GTS, PT and PD inhibited the spontaneous movements in isolated rebait jejunum by causing hyperpolarization through an activation of K+ channels directly.

  • PDF

SNAREs in Plant Biotic and Abiotic Stress Responses

  • Kwon, Chian;Lee, Jae-Hoon;Yun, Hye Sup
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.501-508
    • /
    • 2020
  • In eukaryotes, membraneous cellular compartmentation essentially requires vesicle trafficking for communications among distinct organelles. A donor organelle-generated vesicle releases its cargo into a target compartment by fusing two distinct vesicle and target membranes. Vesicle fusion, the final step of vesicle trafficking, is driven intrinsically by complex formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNAREs are well-conserved across eukaryotes, genomic studies revealed that plants have dramatically increased the number of SNARE genes than other eukaryotes. This increase is attributed to the sessile nature of plants, likely for more sensitive and harmonized responses to environmental stresses. In this review, we therefore try to summarize and discuss the current understanding of plant SNAREs function in responses to biotic and abiotic stresses.

SNARE Assembly and Membrane Fusion: A Paramagnetic Electron Magnetic Resonance Study

  • Kweon, Dae-Hyuk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.32-32
    • /
    • 2003
  • In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly plays a central role in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP2 (vesicle-associated membrane protein 2) engages with two plasma membrane SNAREs syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa) to form the core complex that bridges two membranes. While various factors regulate SNARE assembly, the membrane also plays the regulatory role by trapping VAMP2 in the membrane. The fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial Trp residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation.

  • PDF

Transfer of Xenomitochondria Containing the Entire Mouse Mitochondrial Genome into a Genetically Modified Yeast Expressing Mitochondrial Transcription Factor A

  • Yoon, Young Geol
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1290-1296
    • /
    • 2020
  • Recently, it was reported that entire mammalian mtDNA genomes could be transplanted into the mitochondrial networks of yeast, where they were accurately and stably maintained without rearrangement as intact genomes. Here, it was found that engineered mtDNA genomes could be readily transferred to and steadily maintained in the mitochondria of genetically modified yeast expressing the mouse mitochondrial transcription factor A (Tfam), one of the mitochondrial nucleoid proteins. The transferred mtDNA genomes were stably retained in the Tfam-expressing yeast cells for many generations. These results indicated that the engineered mouse mtDNA genomes introduced in yeast mitochondria could be relocated into the mitochondria of other cells and that the transferred genomes could be maintained within a mitochondrial environment that is highly amenable to mimicry of the biological conditions in mammalian mitochondria.

Purification and Characteristic Properties of DNA Polymerase $\alpha$ from Sea-Urchin, Hemicentrotus pulcherrismus (말똥 성게의 DNA Polymerase $\alpha$의 정제와 특성)

  • HA Mi-Suck;RYU Beung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.2
    • /
    • pp.136-145
    • /
    • 1987
  • From the sea-urchin, Hemicentrotus pulcherrismus, we have purified by four column chromatographic steps for DNA polymerase $\alpha$ activity. The molecular weight of DNA polymerase u was determined to be around 137,000-138,000 by Sephadex G-200 gel filtration and SDS-polyacrylamide gel electrophoresis. The purified enzyme had the optimal activity at pH 7.4. This enzyme showed to be a function of the metal ion $K^+,\;Na^+$\;and\;Mg^{2+}$ employed as activators, the optimum $K^+$\;or\;Na^+ concentration were 20 mM or 25mM and the optimum $Mg^{2+}$ concentration was 10 mM. The enzyme activity was inhibited by N-ethyl-maleimide, aphidicolin, cytosine $\beta-D-arabinofuranoside$ 5'-triphoshate (ara CTP) and phosphonoacetic acid.

  • PDF

Interaction of Forskolin with the Effect of $N^6-Cyclopentyladenosine$ on $[^3H]-Acetylcholine$ Release in Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 $N^6-Cyclopentyladenosine$ 및 Forskolin의 영향)

  • Choi, Bong-Kyu;Park, Hie-Man;Kang, Yeon-Wook;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 1992
  • As it has been reported that the depolarization-induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of ACh release in this study. Slices from rat hippocampus were incubated with $[^3H]-choline$ and the release of the labelled products was evoked by electrical stimulation $(3\;Hz,\;5\;Vcm^{-1},\;2\;ms,\;rectangular\;pulses)$, and the influence of various agents on the evoked tritium-outflow was investigated. $N^6-cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations ranging from 0.1 to $10\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without the changes of basal rate of release. 8-cyclopentyl-1,3-dipropylxanthine $(DPCPX,\;1{\sim}10\;{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium-release. And the CPA effects were significantly inhibited by DPCPX $(2\;{\mu}M)$ pretreatment and the dose-response curve produced by CPA was shifted to the right. The responses to N-ethylmaleimide $(NEM,\;10\;&\;30\;{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the CPA effect were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.3 to $10\;{\mu}M$, increased the evoked ACh-release in a dose-dependent manner and the CPA effects were inhibited by forskolin. These results indicate that the $A_1-adenosine$ heteroreceptor plays an important role in ACh-release via nucleotide-binding protein Gi in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF

Chemical Modification of the Biodegradative Threonine Dehydratase from Serratia marcescens with Arginine and Lysine Modification Reagents

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.124-128
    • /
    • 1995
  • Biodegradative threonine dehydratase purified from Serratia marcescens ATCC 25419 was inactivated by the arginine specific modification reagent, phenylglyoxal (PGO) and the lysine modification reagent, pyridoxal 5'-phosphate (PLP). The inactivation by PGO was protected by L-threonine and L-serine. The second order rate constant for the inactivation of the enzyme by PGO was calculated to be 136 $M^{-1}min^{-1}$. The reaction order with respect to PGO was 0.83. The inactivation of the enzyme by PGO was reversed upon addition of excess hydroxylamine. The inactivation of the enzyme by PLP was protected by L-threonine, L-serine, and a-aminobutyrate. The second order rate constant for the inactivation of the enzyme by PLP was 157 $M^{-1}min^{-1}$ and the order of reaction with respect to PLP was 1.0. The inactivation of the enzyme by PLP was reversed upon addition of excess acetic anhydride. Other chemical modification reagents such as N-ethylmaleimide, 5,5'-dithiobis (2-nitrobenzoate), iodoacetamide, sodium azide, phenylmethyl sulfonylfluoride and diethylpyrocarbonate had no effect on the enzyme activity. These results suggest that essential arginine and lysine residues may be located at or near the active site.

  • PDF

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee;Kim, Hyeran
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

Determination of Mertansine in Rat Plasma Using Liquid Chromatography-Tandem Mass Spectrometry and Pharmacokinetics of Mertansine in Rats

  • Choi, Won-Gu;Kim, Ju-Hyun;Jang, Hyun-Joon;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.59-64
    • /
    • 2020
  • Mertansine, a thiol-containing maytansinoid, is a tubulin inhibitor used as the cytotoxic component of antibody-drug conjugates for the treatment of cancer. Liquid chromatography-tandem mass spectrometry was described for the determination of mertansine in rat plasma. 50-μL rat plasma sample was pretreated with 25 μL of 20 mM tris-(2-carboxyethyl)-phosphine, a reducing reagent, and further vortex-mixing with 50 μL of 50 mM N-ethylmaleimide for 3 min resulted in the alkylation of thiol group in mertansine. Alkylation reaction was stopped by addition of 100 μL of sildenafil in acetonitrile (200 ng/mL), and following centrifugation, aliquot of the supernatant was analyzed by the selected reaction monitoring mode. The standard curve was linear over the range of 1-1000 ng/mL in rat plasma with the lower limit of quantification level at 1 ng/mL. The intra- and inter-day accuracies and coefficient variations for mertansine at four quality control concentrations were 96.7-113.1% and 2.6-15.0%, respectively. Using this method, the pharmacokinetics of mertansine were evaluated after intravenous administration of mertansine at doses of 0.2, 0.5, and 1 mg/kg to female Sprague Dawley rats.

Bacillus licheniformis KFB-C14가 생산하는 내열성 Chitinase의 정제 및 특성

  • Hong, Bum-Shik;Yoon, Ho-Geun;Shin, Dong-Hoon;Cho, Hong-Yon
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.567-573
    • /
    • 1996
  • Chitinase (EC 3.2.1.14) from culture fluid of Bacillus licheniformis KFB-C14 was purified 66-folds to homogenity in overall yield of 21% by ammonium sulfate fractionation, DEAE-Toyopearl, Butyl-Toyopearl and TSK-Gel HW-55F column chromatography. The enzyme protein had a molecular weight of about 86,000 and was composed of one subunit. The enzyme was significantly stable not only at high temperature but also on treatment with organic solvents and protein denaturants such as SDS, urea and guanidine-HC1. The optimum temperature and pH for reaction was 60$\circ $C and 6.0, respectively. The enzyme activity was inhibited by only Mn$^{2+}$ ion, but not inhibited by EDTA, N- ethylmaleimide and pCMB. The enzyme had high activity with colloidal chitin (V$_{max}$: 421) and commercial chitin (V$_{max}$: 480), but not with typical substrates of exo type chitinase. The thermostable chitinase had an useful reactivity for producing functional chitooligosaccharide, showing the production of (GlcNAc)$_{1}, (GlcNAc)$_{3}$, and (GlcNAc)$_{2}$ as major product.

  • PDF