• Title/Summary/Keyword: N-body simulations

Search Result 83, Processing Time 0.025 seconds

Big Data Astronomy: Large-scale Graph Analyses of Five Different Multiverses

  • Hong, Sungryong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.36.3-37
    • /
    • 2018
  • By utilizing large-scale graph analytic tools in the modern Big Data platform, Apache Spark, we investigate the topological structures of five different multiverses produced by cosmological n-body simulations with various cosmological initial conditions: (1) one standard universe, (2) two different dark energy states, and (3) two different dark matter densities. For the Big Data calculations, we use a custom build of stand-alone Spark cluster at KIAS and Dataproc Compute Engine in Google Cloud Platform with the sample sizes ranging from 7 millions to 200 millions. Among many graph statistics, we find that three simple graph measurements, denoted by (1) $n_\k$, (2) $\tau_\Delta$, and (3) $n_{S\ge5}$, can efficiently discern different topology in discrete point distributions. We denote this set of three graph diagnostics by kT5+. These kT5+ statistics provide a quick look of various orders of n-points correlation functions in a computationally cheap way: (1) $n = 2$ by $n_k$, (2) $n = 3$ by $\tau_\Delta$, and (3) $n \ge 5$ by $n_{S\ge5}$.

  • PDF

Lyman alpha radiative transfer at the epoch of cosmic reionization

  • Kim, Hyo Jeong;Park, Hyunbae;Ahn, Kyungjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2017
  • We present a numerical code for the random scattering histories of Lyman alpha photons in the intergalactic medium. The numerical code calculates the radiative transfer under generic three dimensional density, ionization fraction, and peculiar velocity fields based on N-body + radiation transfer simulations of the epoch of reionization. The code is tested with models having analytical solutions, which have idealized geometry and simplified velocity fields. The emergent line profiles can give constraints to the ionization structure around Lyman alpha sources in the early universe.

  • PDF

Three Dimensional Numerical Code for the Expanding Flat Universe

  • Min, Kyoung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.101-106
    • /
    • 1987
  • The current distribution of galaxies may contain clues to the condition of the universe when the galaxies condensed and to nature of the subsequent expansion of the universe. The development of this large scale structure can be studied by employing N-body computer simulations. The present paper describes the code developed for this purpose. The computer code calculates the motion of collisionless matter acting under the force of gravity in an expanding flat universe. The test run of the code shows the error less than 0.5% in 100 iterations.

  • PDF

SPH models of the interactions in Stephan's Quintet

  • Hwang, Jeong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.58.2-58.2
    • /
    • 2011
  • We present smoothed particle hydrodynamic models of the interactions in the compact galaxy group, Stephan's Quintet. Adding thermohydrodynamic effects to the earlier collisionless N-body simulations of Renaud et al. (2010), we further investigate the dynamical interaction history and evolution of the intergalactic gas of Stephan's Quintet. Specifically, we model the formation of the hot X-ray gas, the group-wide shock, and emission line gas as the result of NGC 7318b colliding with the group as well as reproduce the tidal structures in the group. We compare our model results to multi-wavelength observations.

  • PDF

Cosmic Dawn III: Simulating the Reionization of the Local Group

  • Ahn, Kyungjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2021
  • Cosmic Dawn III (CoDa III) is the last of the series of simulations of the reionization of the Local Group, the galaxy cluster including the Milky Way and the M31. The simulation is based on the constrained initial condition, N-body and hydrodynamic simulation of structure formation, modelling of galaxy formation, calculation of radiation transfer, and calibration against the observed high-redshift galaxy luminosity function. We present various physical properties we observed and important lessons that could stimulate future observations.

  • PDF

Interactions between early- and late-type galaxies and morphology transformation

  • Hwang, Jeong-Sun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2013
  • We perform a set of N-body/SPH simulations of galaxy interactions between early- and late-type galaxies with the mass ratio of 2 to 1. We show that mass transfer during a fly by interaction (the closest approach distance ~50kpc) can cause the morphology transformation of an early-type galaxy to a late type. In our simulations, we vary the orbital parameters of the interactions and the cold gas fraction of the late-type galaxy to compare how the morphology transformation is affected by the amount of mass transfer and orbital angular momentum of cold gas accreted to the early type. We also include hot halo gas in the galaxy models and show the location of the tidal bridge can be influenced by the shock generated during the collision.

  • PDF

The evolution of a late-type galaxy in a Coma-like cluster

  • Hwang, Jeong-Sun;Park, Changbom;Banerjee, Arunima
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.64.1-64.1
    • /
    • 2016
  • We study the evolution of a late-type galaxy (LTG) in a rich cluster environment by using N-body/SPH simulations. To do that we perform a set of simulations of a LTG falling in a Coma-like cluster and also the LTG colliding with early-type galaxies (ETGs) multiple times in the cluster environment. We use a catalog of the Coma cluster in order to estimate the typical number of collisions and the closest approach distances that a LTG would experience in the cluster. We investigate the cold gas depletion and star formation quenching of our LTG model influenced by the hot cluster gas as well as the hot halo gas of the colliding ETGs.

  • PDF

Long lived spiral structures in galaxies

  • Saha, Kanak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2017
  • Spiral structure in disk galaxies is modeled with ncollisionless N-body simulations including live disks, halos, and bulges with a range of masses. Two of these simulations make long-lasting and strong two-arm spiral wave modes that last for about 5 Gyr with constant pattern speed. These two had a light stellar disk and the largest values of the Toomre Q parameter in the inner region at the time the spirals formed, suggesting the presence of a Q-barrier to wave propagation resulting from the bulge. The relative bulge mass in these cases is about 10%. Models with weak two-arm spirals had pattern speeds that followed the radial dependence of the Inner Lindblad Resonance. In addition to these, we also report a few more cases where two-armed spirals are developed and are maintained for a several rotation time scales.

  • PDF

Radial distribution of blue straggler stars in Magellanic Cloud clusters

  • Hong, Jongsuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2018
  • Using the high-resolution observational data obtained by the Hubble Space Telescope, we found that there is the diversity of the radial trends of blue straggler stars (BSSs) in young massive clusters (YMCs) in the Large Magellanic Cloud unlike BSSs in old globular clusters usually showing the segregated radial distributions. To understand the dynamical processes that lead to the none-segregated or even inversely-segregated radial distribution of BSSs, we performed direct N-body simulations for YMCs. Our numerical simulations show that the presence of black hole subsystems inside the cluster centre can significantly affect the dynamical evolution of BSSs and eventually lead to none- or inversely-segregated radial distribution of BSSs.

  • PDF

Performance Analysis of Multiple-Hop Wireless Body Area Network

  • Hiep, Pham Thanh;Hoang, Nguyen Huy;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.419-427
    • /
    • 2015
  • There have been increases in the elderly population worldwide, and this has been accompanied by rapid growth in the health-care market, as there is an ongoing need to monitor the health of individuals. Wireless body area networks (WBANs) consist of wireless sensors attached on or inside the human body to monitor vital health-related problems, e.g., electrocardiograms (ECGs), electroencephalograms (EEGs), and electronystagmograms (ENGs). With WBANs, patients' vital signs are recorded by each sensor and sent to a coordinator. However, because of obstructions by the human body, sensors cannot always send the data to the coordinator, requiring them to transmit at higher power. Therefore, we need to consider the lifetime of the sensors given their required transmit power. In the IEEE 802.15.6 standard, the transmission topology functions as a one-hop star plus one topology. In order to obtain a high throughput, we reduce the transmit power of the sensors and maintain equity for all sensors. We propose the multiple-hop transmission for WBANs based on the IEEE 802.15.6 carrier-sense multiple-access with collision avoidance (CSMA/CA) protocol. We calculate the throughput and variance of the transmit power by performing simulations, and we discuss the results obtained using the proposed theorems.