• Title/Summary/Keyword: N-acetylchitosan

Search Result 4, Processing Time 0.016 seconds

Chitosan and Acetylchitosan from Squid Pen and Their Characteristics (오징어 연골을 이용한 Chitosan 및 Acetylchitosan의 제조와 특성)

  • CHOI Hyeon-Mee;HWANG Sun-Young;PARK Seong-Min;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.563-569
    • /
    • 2001
  • In order to utilize the processing wastes of squid, chitosan was prepared by intermittent deacetylation treaoent of $\beta-chitin$ contained richly in the pen of squid. Acetylchitosan also was synthesized from squid pen chitosan with anhydrous acetic acid and their characteristics were investigated. The amounts of nitrogen and ash of squid pen chitosan were $5.80.2\% and 0.2\pm0.03\%$ respectively, the yield of squid pen chitosan was $25\pm3\%$, the degree of deacetylation was $92\%$, and the molecular weight was $1.15\times10^6$, Acetyl contents of N-acetylchitosan powder, acetylchitosan bead, N-ACF-1 (N-acetylchitosan film-1) and N-ACF-2 (N-acetylchitosan film-2) were $55.9\%, 63.2\%, 56\% and 58.7\%$ respectively. Two major peaks, amide I ($1,653 cm^{-1}$) and II ($1,558 cm^{-1}$) bent, on FT-IR spectra of the N-acetylchitosan from squid pen were almost similar to these of $\beta-chitin$, While there was a broad single peak at $1,601 cm^{-1}$assigned to be an amide I bend in squid pen chitosan. The CP/MAS NMR spectra of $\beta-chitin$, squid pen chitosan and N-acetylchitosan from squid pen showed a relative broad and single peak at 74 ppm assigned to fifth carbon (C-5) and third carbon (C-3). In case of $\beta-chitin$ and N-acetylchitosan from squid pen, single peak at 74 ppm was showed as the same of $\beta-chitin$ type.

  • PDF

Chitosan and N-acetylchitosan film from Squid Pen and Their Characteristics (오징어 연골을 이용한 Chitosan 및 N-acetylchitosan film의 제조 및 특성)

  • CHOI Hyeon-Mee;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.356-360
    • /
    • 2000
  • In order to utilize the processing wastes of squid, chitosan was prepared by intermittent deacetylation treatment of ${\beta}-chitin$ richly contained in the pen of squid, and then their characteristics of chitosan and N-acetylchitosan film were studied. The acetylation time of N-acetylchitosan film-1 (N-ACE-1) manufactured from chitosan solution by treating with acetic anhydride was about 12 hrs. In SEM photomicrographs, the surface of chitosan film was regularly arranged netlike, and that of N-acetylchitosan film-2 (N-ACE-2) was rough like snowflake and larger than chitosan film. The chitosan film (thickness 0.02 mm, time 60 min) had the highest tensile strength ($1,240 kg/cm^2$) and elongation ($58.25{\%}$), N-ACP-1 (thickness 0.02 mm, time 60 min) had the highest water permeability ($539 g/m^2{\cdot}24 hrs$), oxygen permeability ($20,000 cm^3/m^2{\cdot}24 hrs{\cdot}atm$) and water uptake ($350{\%}$) among the tested films.

  • PDF

Syntheses of the derivatives of chitin and chitosan, and their physicochemical properties (키틴 및 키토산 유도체의 합성과 그 물리화학적 특성)

  • Byun, Hee-Guk;Kang, Ok-Ju;Kim, Se-Kwon
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.265-271
    • /
    • 1992
  • Derivatives (microcrystalline chitin, carboxymethylchitin, acetylchitin, N-acetylchitosan, ethylchitosan and chitosansulfate) of chitin and chitosan were synthesized, and the physicochemical properties of the derivatives were compared with those of chitin and chitosan. Carboxymethylchitin was soluble in water or acetic acid, whereas chitosan and ethylchitosan were soluble in acetic acid alone. The water binding capacity of N-acetylchitosan was two fold higher than that of chitin. Lipid binding capacity of carboxymethylchitin was the highest, holding 1800%, and that of chitin was the lowest, holding 511% among the derivatives. Carboxymethylchitin among the derivatives showed the highest emulsifying capacity, however chitin and chitosan didn't produce emulsions. Dye binding capacity of acetylchitin was the highest, holding 0.93 mg dye/g sample (Blue R-250) and 0.96 mg dye/g sample (Red No. 2). It was concluded that carboxymethylchitin is a good emulsifier and N-acetylchitosan, chitosansulfate and chitosan are suitable for use as dye absorbents.

  • PDF

Development of Artificial Skin from Chitosan Derivatives

  • Yong-Don Won;Chang-Kook Lee;Beung-Ho Ryu
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 1999
  • Chitosan derivitives, a sulfated N-acetylchitosan was synthesized, and artificial skin of sulfated N-acetylchitosan and N-carboxyl butyl chitosan were investigated. Sulfated derivatives of chitosan were analyzed by {TEX}${13}^C${/TEX}-NMR and the structure on N-acetyl chitosan 3,6-O-disulfate were confirmed. Rabbits underwent a midline laparotomy followed either by a bilateral peritoneal sidewall abraison(3.0×1.5cm). The injured surface was then covered with 0.2mm thick sulfated N-acetyl chitosan membrane. Sulfated N-acetyl chitosan membrane was found to reduce postsurgical bleeding after abraison of peritoneal surface treated with sulfated N-acetyl chitosan membrane. Sulfated N-acetyl chitosan implanted rabbit showed quick wound healing than N-carboxybutyl chitosan. With a sterilization procedure of chemical sterilization, sulfated N-acetyl chitosan seem to be better substitutes than N-carboxybutyl chitosan.

  • PDF