• Title/Summary/Keyword: N-S solver

Search Result 39, Processing Time 0.025 seconds

Modeling wind ribs effects for numerical simulation external pressure load on a cooling tower of KAZERUN power plant-IRAN

  • Goudarzi, Mohammad-Ali;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.479-496
    • /
    • 2008
  • In this paper, computer simulation of wind flow around a single cooling tower with louver support at the base in the KAZERUN power station in south part of IRAN is presented as a case study. ANSYS FLOTRAN, an unstructured finite element incompressible flow solver, is used for numerical investigation of wind induced pressure load on a single cooling tower. Since the effects of the wind ribs on external surface of the cooling tower shell which plays important role in formation of turbulent flow field, an innovative relation is introduced for modeling the effects of wind ribs on computation of wind pressure on cooling tower's shell. The introduced relation which follows the concept of equivalent sand roughness for the wall function is used in conjunction with two equations ${\kappa}-{\varepsilon}$ turbulent model. In this work, the effects of variation in the height/spacing ratio of external wind ribs are numerically investigated. Conclusions are made by comparison between computed pressure loads on external surface of cooling tower and the VGB (German guideline for cooling tower design) suggestions.

NUMERICAL SIMULATIONS OF LOW- AND HIGH-FREQUENCY BUZZ AROUND AN AXISYMMETRIC SUPERSONIC INLET (축대칭 초음속 흡입구 주위의 저주파수 및 고주파수 버즈(Buzz)에 대한 수치모사)

  • Kwak, E.;Lee, N.;Gong, H.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 2013
  • In this paper, numerical simulations of both low- and high-frequency buzz phenomena at the throttle ratios (T.R.) in Nagashima's experiment are performed. The dominant frequencies of the low-and high-frequency buzz in the experiment are about 109 Hz with T.R.=0.97 and 376 Hz with T.R.=0.55, respectively. An axisymmetric solver with the S-A turbulence model is used for the simulations, and DFT(Discrete Fourier Transform) on pressure histories is conducted for the buzz frequency analysis. In the present simulations, the free-stream Mach number and the Reynolds number based on the inlet diameter are 2 and $10^7$, respectively. Both the low- and high-frequency buzz phenomena are accomplished without the changes in the grid topology. The dominant frequency of the simulation is about 125 Hz with T.R.=0.97, while it is 399 Hz with T.R.=0.55.

Validation of HART II Structural Dynamics Predictions Based on Prescribed Airloads

  • Sa, Jeong-H.;You, Young-H.;Park, Jae-S.;Park, Soo-H.;Jung, Sung-N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • In this study, the accuracy of CSD (Comprehensive Structural Dynamics) analysis on the evaluation of blade aeroelastic responses and structural loads of HART(Higher harmonic Aeroacoustic Rotor Test) II baseline rotor is assessed using a comprehensive rotorcraft dynamics code, CAMRAD II, and a nonlinear flexible multi-body dynamics analysis code, DYMORE. Considering insufficient measurement data for HART II rotor, prescribed airloads computed by a three-dimensional compressible flow solver KFLOW are used to replace the lifting-line airloads and thereby enhance the prediction capability of the comprehensive analyses. The CSD results on blade elastic deflections using the prescribed airloads indicate more oscillatory behavior than those by lifting-line based approaches, but the wave pattern becomes improved by including artificial damping into the rotor system. It is demonstrated that the structural load predictions are improved significantly by the prescribed airloads approach against the measured data, as compared with an isolated CSD analysis.

Numerical Simulation of the Navier-Stokes Equations Using the Artificial Compressibility (AC) Method with the 4th Order Artificial Dissipation Terms

  • Park, Ki-Doo;Lee, Kil-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.516-523
    • /
    • 2009
  • The artificial compressibility (AC) method for the incompressible Navier-Stokes equations in the generalized curvilinear coordinates using the primitive form is implemented. The main advantage of the AC approach is that the resulting system of equations resembles the system of compressible N-S equations and can thus be integrated in time using standard, well-established time-marching methods. The errors, which are the odd-even oscillation, for pressure field in using the artificial compressibility can be eliminated by using the $4^{th}$ order artificial dissipation term which is explicitly included. Even though this paper focuses exclusively on 2D laminar flows to validate and assess the performance of this solver, this numerical method is general enough so that it can be readily extended to carry out 3D URANS simulation of engineering flows. This algorithm yields practically identical velocity profiles and primary vortex and secondary vortices that are in excellent overall agreement with the results of the vorticity-stream function formulation (Ghia et al., 1982). However, the grid resolution have to be required to be large enough to express the various vortices.

  • PDF

Successive Max-min Connection-Ratio Preoblem:Routing with Fairness and Efficiency in Circuit Telecommunication Networks (연속적인 최대-최소 연결비율 문제: 회선망에서의 공정성 및 효율성을 보장하는 경로설정)

  • 박구현;우재현
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.13-29
    • /
    • 1997
  • This paper considers a new routing problem, successive max-min connection ratio problem (SMCRP), arised in circuit telecommunication networks such as SONET and WDM optical transport network. An optimization model for SMCRP is established based on link-flow formulation. It's first optimization process is an integral version of maximum concurrent flow problem. Integer condition does not give the same connection-ratio of each node-pair at an optimal solution any more. It is also an integral multi-commodity flow problem with fairness restriction. In order to guarantee fairness to every node-pair the minimum of connection ratios to demand is maximized. NP- hardness of SMCRP is proved and a heuristic algorithm with polynomial-time bound is developed for the problem. Augmenting path and rerouting flow are used for the algorithm. The heuristic algorithm is implemented and tested for networks of different sizes. The results are compared with those given by GAMS/OSL, a popular commercial solver for integer programming problem.n among ferrite-pearlite matrix, the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 70%, distribution range of fatigue.ife was small in same stress level. (2) $\sqrt{area}_{max}$ of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of $\sqrt{area}_{max}$ may be used as a guideline for the control of inclusion size in the steelmaking.

  • PDF

Unstructured Finite-Volume Analysis of Vaporization Characteristics of Fuel Droplets in Laminar Flow Field (비정렬 유한체적법을 이용한 유동장 내의 연료액적 증발 특성 해석)

  • Kim, T.J.;Kim, Y.M.;Sohn, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The present study has numerically analyzed the vaporization characteristics of fuel droplets in the high temperature convective flow field. The axisymmetric governing equations for mass, momentum, energy, and species are solved by an iterative and implicite unstructured finite-volume method. The moving boundary due to vaporization is handled by the deformable unstructured grid technique. The pressure-velocity coupling in the density-variable flows is treated by the SIMPLEC algorithm. In terms of the matrix solver, Bi-CGSTAB is employed for the numerically efficient and stable convergence. The n-decane is used as a liquid fuel and the initial droplet temperature is 300K. Computations are performed for the nonevaporating and evaporating droplets with the relative interphase velocity(25m/s). The unsteady vaporization process has been simulated up to the nondimensional time, 25. Numerical results indicate that the mathematical model developed in this study succesfully simulates the main features of the droplet vaporization process in the convective environment.

  • PDF

Heat Exchanger Design Analysis for Propellant Pressurizing System of Satellite Launch Vehicles (소형위성 발사체용 추진제 가압 열교환기 설계 해석)

  • Lee H. J.;Han S. Y.;Chung Y. G.;Cho N. K.;Kil G. S.;Kim Y. K.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.49-56
    • /
    • 2004
  • A heated and expanded helium is used to pressurize liquid propellants in propellant tanks of propulsion system of liquid propellant launch vehicles. To produce a heated and expanded helium, an hot-gas heat exchanger is used by utilizing heat source from an exhausted gas, which was generated in a gas generator to operate turbine of turbo-pump and dumped out through an exhaust duct of engine. Both experimental and numerical approaches of hot-gas heat exchanger design were conducted in the present study. Experimentally, siliconites - electrical resistance types - were used to simulate the full heat condition instead of an exhausted gas. Cryogenic heat exchangers, which were immersed in a liquid nitrogen pool, were used to feed cryogenic gaseous helium in a hot-gas heat exchanger. Numerical simulation was made using commercially utilized solver - Fluent V.6.0 - to validate experimental results. Helically coiled stainless steel pipe and stainless steel exhausted duct were consisted of tetrahedron unstructured mesh. Helium was a working fluid Inside helical heat coil and regarded as an ideal gas. Realizable k-』 turbulent modeling was adopted to take turbulent mixing effects in consideration. Comparisons between experimental results and numerical solutions are Presented. It is observed that a resulted hot-gas heat exchanger design is reliable based on the comparison of both results.

On Numerical Simulation of Salt-Water Wedge in Coastal Aquifer (해안 대수층의 해수침투에 관한 수치적 고찰)

  • Lee, Woo-Dong;Hur, Dong-Soo;Jeong, Yeong-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.82-82
    • /
    • 2015
  • 해안 대수층은 해수와 담수가 공존하는 지역으로 상대적으로 밀도가 큰 해수가 대수층의 담수 아래에 쐐기형태로 존재하게 된다. 이러한 쐐기형태의 해수와 담수의 경계면은 압력경도의 평형에 의해 경계면이 유지되며, 해수면 또는 지하수위가 변동할 경우 해수-담수 경계면의 균형이 무너짐과 더불어 압력경도의 평행이 이루어질 때 까지 해수-담수 경계면의 이동이 계속 진행된다. 수위 변화의 주요 원인으로는 지구온난화 및 기후변화로 인한 지속적인 해수면 상승과 도서지역의 인구증가 및 산업화로 인한 무분별한 지하수의 사용 등에 의한 지하수위 저하 등을 꼽을 수 있다. 이와 같은 원인으로 해안 및 도서지역에서는 해안 대수층의 해수침투거리가 증가하여 지하수 이용에 큰 어려움을 겪고 있다. 이에 해안 대수층의 해수침투 범위 및 거리를 추정하기 위한 많은 연구들이 다양한 분야에서 지속해서 이루어지고 있지만, 서로 밀도가 다른 해수와 담수가 공존하는 해안 대수층 내의 수리특성을 명확히 파악하기에는 아직까지 미흡한 점들이 많다. 과거에는 Darcy의 법칙 및 Ghyben-Herzberg 식에 근거한 이론적인 연구들이 주로 이루어졌고, 근래에 현장관측이나 수리모형실험이 국내 외적으로 수행되고 있으나, 모든 영역의 지하수의 특성을 조사하는 것이 사실상 불가능하다. 이에 최근에는 컴퓨터 성능의 비약적인 발전과 더불어 다양한 수치해석방법에 의한 수치모델들이 개발되어 시뮬레이션에 적용되고 있다. 하지만 거의 대부분의 수치모델은 해안 대수층 수리특성을 투수계수에 의존하고 있을 뿐, 대수층 내부의 해수-담수에 의한 밀도류의 유동특성을 전혀 고려하지 못한 채 정수압에 근거한 해수-담수 경계면에 대해 모의하고 있는 정도이다. 따라서 본 연구에서는 해안 대수층 내부의 유동현상을 투수계수에 의존하는 방법에서 탈피하여 대수층 매체의 입경, 공극, 형상 등을 고려할 수 있을 뿐만 아니라, 염분 및 온도차에 의한 밀도류를 해석할 수 있는 강비선형 수치모델을 개발하여 해수침투 현상을 직접 모의한다. 나아가 대부분의 이전 연구들에서 간과하고 있는 해안지역의 대표적 물리력인 파랑과 조석의 영향이 해안 대수층의 해수침투에 미치는 영향, 해안 대수층의 지하수위 및 해수면의 수위차에 의한 해수침투 특성 그리고 이를 제어 할 수 있는 새로운 대응기술을 제안하는 것을 목적으로 한다.

  • PDF

A Study on Welding Deformation of thin plate block in PCTC (PCTC 박판 블록 용접 변형에 관한 연구)

  • Kang, Serng-Ku;Yang, Jong-Su;Kim, Ho-Kyeong
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.97-97
    • /
    • 2009
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plate should be carefully joined to minimize the welding deformation which costs time and money for repair. For one effort to reduce welding deformation, it is very useful to predict welding deformation before welding execution. There are two methods to analyze welding deformation. One is simple linear analysis. The other is nonlinear analysis. The simple linear analysis is elastic analysis using the equivalent load method or inherent strain method from welding experiments. The nonlinear analysis is thermo-elastic analysis which gives consideration to the nonlinearity of material dependent on temperature and time, welding current, voltage, speed, sequence and constraint. In this study, the welding deformation is analyzed by using thermo-elastic method for PCTC(Pure Car and Truck Carrier) which carries cars and trucks. PCTC uses thin plates of 6mm thickness which is susceptible to welding heat. The analysis dimension is 19,200mm(length) * 13,825mm(width) * 376mm(height). MARC and MENTAT are used as pre and post processor and solver. The boundary conditions are based on the real situation in shipyard. The simulations contain convection and gravity. The material of the thin block is mild steel with $235N/mm^2$ yield strength. Its nonlinearity of conductivity, specific heat, Young's modulus and yield strength is applied in simulations. Welding is done in two pass. First pass lasts 2,100 second, then it rests for 900 second, then second pass lasts 2,100 second and then it rests for 20,000 second. The displacement at 0 sec is caused by its own weight. It is maximum 19mm at the free side. The welding line expands, shrinks during welding and finally experiences shrinkage. It results in angular distortion of thin block. Final maximum displacement, 17mm occurs around welding line. The maximum residual stress happens at the welding line, where the stress is above the yield strength. Also, the maximum equivalent plastic strain occurs at the welding line. The plastic strain of first pass is more than that of second pass. The flatness of plate in longitudinal direction is calculated in parallel with the direction of girder and compared with deformation standard of ${\pm}15mm$. Calculated value is within the standard range. The flatness of plate in transverse direction is calculated in perpendicular to the direction of girder and compared with deformation standard of ${\pm}6mm$. It satisfies the standard. Buckle of plate is calculated between each longitudinal and compared with the deformation standard. All buckle value is within the standard range of ${\pm}6mm$.

  • PDF