• Title/Summary/Keyword: N-Hydroxysuccinimide

Search Result 42, Processing Time 0.026 seconds

Development of Extracellular Matrix (ECM) based Dermal Filler (세포외기질(ECM) 생체소재 기반 필러 개발 연구)

  • Kim, Na Hyeon;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.137-142
    • /
    • 2019
  • Numerous efforts are being made to develop an ideal dermal filler that should be bio-compatibility, non-immunogenicity, long-lasting and biodegradable without a toxic secretion. Biomaterials of dermal fillers are hyaluronic acid filler, calcium filler, PMMA filler and collagen filler depending on the ingredient. Although hyaluronic acid (HA) is most widely used, it has shortages such as short shelf life and low mechanical strength compare to extracellular matrix (ECM). The cartilage ECM composed of collagen type II, proteoglycans, glycosaminoglycans (GAGs) and in a minor part with glycoproteins. In this study, we developed a cartilage ECM injectable filler capable of improving biocompatibility and longevity compared with hyaluronic acid (HA) fillers. The ECM hydrogel was cross-linked by the reaction of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) for mechanical enhancement. Prepared ECM filler was compared with cross-linked HA by butanediol diglycidyle ether (BDDE), which is the most widely used natural polymers for dermal filler. In the results, the articular cartilage ECM hydrogel has great potential as a dermal filler to improve the biophysical and biological performance.

Immobilization of Lipase on Single Walled Carbon Nanotubes in Ionic Liquid

  • Lee, Han-Ki;Lee, Jae-Kwan;Kim, Mahn-Joo;Lee, Cheol-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.650-652
    • /
    • 2010
  • A lipase from Pseudomonas cepacia was immobilized onto single walled carbon nanotubes (SWNTs) in two different ways in each of two solvent systems (buffer and ionic liquid). The most efficient immobilization was achieved in ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM-$BF_4$). In this procedure, carbon nanotubes were first functionalized noncovalently with 1-pyrenebutyric acid N-hydroxysuccinimide ester and then subject to the coupling reaction with the lipase in ionic liquid. The resulting immobilized enzyme displayed the highest activity in the transesterification of 1-phenylethyl alcohol in the presence of vinyl acetate in toluene.

Fabrication of a CNT Filter for a Microdialysis Chip

  • An, Yun-Ho;Song, Si-Mon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.279-284
    • /
    • 2006
  • This paper describes the fabrication methods of a carbon nanotube (CNT) filter and a microdialysis chip. A CNT filter can help perform dialysis on a microfluidic chip. In this study, a membrane type of a CNT filter is fabricated and located in a microfluidic chip. The filter plays a role of a dialysis membrane in a microfluidic chip. In the fabrication process of a CNT filter, individual CNTs are entangled each other by amide bonding that is catalyzed by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The chemically treated CNTs are shaped to form a CNT filter using a PDMS film-mold and vacuum filtering. Then, the CNT filter is sandwiched between PDMS substrates, and they are bonded together using a thin layer of PDMS prepolymer as adhesive. The PDMS substrates are fabricated to have a microchannel by standard photo-lithography technique.

A comparison of detection capabilities of anti-IgG immobilizedby protein G and NHS (Protein G와 NHS를 이용하여 고정한 anti-IgG의 검출 성능 비교)

  • Sin, Eun-Jung;Sohn, Young-Ho;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.142-148
    • /
    • 2010
  • We have compared and investigated the detection capabilities of antibody of immunoglobulin G(anti-IgG) immobilized by protein G and N-hydroxysuccinimide(NHS) at the end of the self-assembled monolayer(SAM). Surface plasmon resonance(SPR) sensor has been utilized to measure the interaction between biomolecules. After formation of the protein G and SAM, anti-IgG, bovine serum albumin(BSA) and IgG has been sequently injected. Through the reponse of the SPR, we can conclude that the protein G immobilized anti-IgG better than the SAM. In addition, IgG detection capability of the anti-IgG immobilized by the protein G showed better performance compared with that immobilized by the SAM.

Characterization of biotin-avidin recognition system constructed on the solid substrate

  • Lim, Jung-Hyurk
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.460-468
    • /
    • 2005
  • The biotin-avidin complex, as a model recognition system, has been constructed through N-hydroxysuccinimide(NHS) reaction on a variety of substrates such as a smooth Au film, electrochemically roughened Au electrode and chemically modified mica. Stepwise self-assembled monolayers (SAMs) of biotin-avidin system were characterized by surface-enhanced resonance Raman scattering (SERRS) spectroscopy, atomic force microscopy (AFM) and surface plasmon resonance (SPR). A strong SERRS signal of rhodamine tags labeled in avidin from the SAMs on a roughened gold electrode indicated the successful complex formation of stepwise biotin-avidin recognition system. AFM images showed the circular shaped avidin aggregates (hexamer) with ca. $60{\AA}$ thick on the substrate, corresponding to one layer of avidin. The surface coverage and concentration of avidin molecules were estimated to be 90% and $7.5{\times}10^{-12}mol/cm^2$, respectively. SPR technique allowed one to monitor the surface reaction of the specific recognition with high sensitivity and precision.

Synthesis of a squaric acid-derived molecular probe for near-infrared fluorescence and photoacoustic imaging

  • Jung Eun Park;Yong Dae Park;Jongho Jeon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.177-181
    • /
    • 2020
  • Dual-modality imaging strategy using near-infrared fluorescence (FLI) and photoacoustic imaging (PAI) demands a suitable probe to enable dual-modular signal production. Herein, we demonstrate a synthetic protocol of small molecular dye for dual-modular FLI and PAI. A condensation reaction between squaric acid and carboxypentyl benzoindolium, and followed by basic hydrolysis to give the benzoindole derived squaraine (BSQ) dye in 49% yield. Next, the carboxylic acid group of BSQ was further functionalized with N-hydroxysuccinimide or azide group for an efficient conjugation with a targeting biomolecule. BSQ showed a maximum fluorescent emission at around 680 nm and the photoacoustic signal reached a maximum intensity at 680-700 nm. Based on these results, we conclude that BSQ analogs will be useful probes for dual-modular (FLI/PAI) imaging studies in animal models.

Synthesis and Characterization of Thermo-responsive Poly(N-isopropylacrylamide) via Hydrolysis and Amidation of Poly(acrylonitrile) (폴리아크릴로니트릴의 가수분해와 아미드화에 의한 열감응성 폴리(N-이소프로필아크릴아미드)의 합성과 특성분석)

  • Lee, Hee Dong;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.784-793
    • /
    • 2013
  • A two-step method for obtaining poly(N-isopropylacrylamide) (PNIPAAm) from poly(acrylonitrile) (PAN) was investigated in order to find a feasibility of imparting thermo-responsive property onto textile fiber materials. PAN was converted to poly(acrylic acid) (PAA) by hydrolysis at a first-step, and then PAA was converted to PNIPAAm at a second step via an amidation reaction of PAA with isopropylamine (IPA) in DMF medium using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as catalysts. High content of carboxylic groups at the first step was obtained by the successive alkaline and acid hydrolysis of PAN. The degree of conversion of PAA to PNIPAAm at the second step was dependent on the amount of catalysts EDC and NHS. PNIPAAm converted from PAA through amidation reaction showed a lower critical solution temperature (LCST) behavior when the conversion was higher than about 53%.

Liquid Crystal-based Imaging of Enzymatic Reactions at Aqueous-liquid Crystal Interfaces Decorated with Oligopeptide Amphiphiles

  • Hu, Qiongzheng;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1262-1266
    • /
    • 2010
  • In this study, we investigated the use of liquid crystals to selectively detect the activity of enzymes at interfaces decorated with oligopeptide-based membranes. We prepared a mixed monolayer of tetra(ethylene glycol)-terminated lipids and carboxylic acid-terminated lipids at the aqueous-liquid crystal (LC) interface. The 17 amino-acid oligopeptide SNFKTIYDEANQFATYK was then immobilized onto this mixed monolayer through N-hydroxysuccinimide-activation of the carboxylic acid groups. We examined the orientational behavior of nematic 4-cyano-4'-pentylbiphenyl (5CB) after conjugation of the 17 amino-acid oligopeptide with the mixed monolayer assembled at the interface. Immobilization of the oligopeptide caused orientational transitions in 5CB, with a change from homeotropic (perpendicular) to tilted alignment, which was primarily due to the reorganization of the monolayer. The orientation of the 5CB molecules returned to its homeotropic state after contacting the interface containing ${\alpha}$-chymotrypsin, which can cleave the immobilized oligopeptide. Control experiments confirmed that the enzymatic activity of ${\alpha}$-chymotrypsin triggered the ordering transitions in the LC. These results suggest that the LC can provide a facile method for selective detection of enzymatic activity.

BIACORE 바이오센서를 이용한 B형 간염 표면항원 정량분석의 기초연구

  • Yu, Chang-Hun;Ryu, Gang;Jeon, Jun-Yeong;Lee, Hyeon-Ik;Choe, Seong-Cheol;Lee, Eun-Gyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.231-234
    • /
    • 2001
  • We performed a basic experiment for rapid. on-line, real-time measurement of HBsAg by using a BIACORE biosensor, a chip-based sensor utilizing surface plasmon resonance technology to quantify the recognition and interaction of biomolecules. We immobilized an a -HBsAg antibody on a CM5 chip surface which was activated by N-hydroxysuccinimide for amine coupling with HBsAg, and measured the mass increase from the coupling. This study showed the potential of this biosensor-based method as a rapid, multi-sample, on-line assay. Once properly validated, it can serve as a more powerful method for HBsAg quantification.

  • PDF

Glucose Sensors Using Lipoic Acid Self-Assembled Monolayers

  • Kim, Ji Yeong;Nakayama, Tadachika;Kim, Jae-Hun;Kim, Sang Sub
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.295-298
    • /
    • 2014
  • A novel approach to fabricating high-performance glucose sensors is reported, which is based on the process of self-assembled monolayers (SAMs). In this study, we have particularly used ${\alpha}$-lipoic acid (LA) SAMs for the glucose sensors. To our best knowledge, this study is the first one to use LA as SAMs for this purpose. N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were deliberately attached at the same time on the LA SAM. Then, glucose oxidase ($GO_X$) and horseradish peroxidase (HRP) were sequentially immobilized. Thus, the HRP/$GO_X$/NHS-EDC/LA-SAM/Au/Cr/glass working electrode was developed. The glucose-sensing capability of the fabricated sensor was systematically measured by the use of cyclic voltammetry in the range of 1-30 mM glucose in phosphate-buffered saline. The result showed a good sensitivity, that is, as high as $27.5{\mu}A/(mM{\cdot}cm^2)$. This result conspicuously demonstrates that LA can be one of promising substances for use as SAMs for accurately monitoring trace levels of glucose concentration in human blood.