DOI QR코드

DOI QR Code

Immobilization of Lipase on Single Walled Carbon Nanotubes in Ionic Liquid

  • Lee, Han-Ki (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Jae-Kwan (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Mahn-Joo (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Cheol-Jin (Nanotube and Nanodevice Laboratory, School of Electrical Engineering and Department of Micro/Nano Systems, Korea University)
  • Published : 2010.03.20

Abstract

A lipase from Pseudomonas cepacia was immobilized onto single walled carbon nanotubes (SWNTs) in two different ways in each of two solvent systems (buffer and ionic liquid). The most efficient immobilization was achieved in ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIM-$BF_4$). In this procedure, carbon nanotubes were first functionalized noncovalently with 1-pyrenebutyric acid N-hydroxysuccinimide ester and then subject to the coupling reaction with the lipase in ionic liquid. The resulting immobilized enzyme displayed the highest activity in the transesterification of 1-phenylethyl alcohol in the presence of vinyl acetate in toluene.

Keywords

References

  1. Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic Organic Chemistry; Pergamon: Oxford, UK, 1994.
  2. Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis; VCH: Weinheim, Germany, 1995; Vols. I and II.
  3. Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999.
  4. Koskinen, A. M. P.; Klivanov, A. M. Enzymatic Reactions in Organic Media; Blackie Academic & Professional: Glasgow, Scotland, 1996.
  5. Kim, M.-J.; Ahn, Y.; Park, J. Curr. Opin. Biotechnol. 2002, 13, 578. https://doi.org/10.1016/S0958-1669(02)00347-6
  6. Kim, M.-J.; Ahn, Y.; Park, J. Bull. Korean Chem. Soc. 2005, 26, 515. https://doi.org/10.5012/bkcs.2005.26.4.515
  7. Ahn, Y.; Ko, S.-B.; Kim, M.-J.; Park, J. Coord. Chem. Rev. 2008, 252, 647. https://doi.org/10.1016/j.ccr.2007.09.009
  8. Dresselhaus, M. S.; Dresselhaus G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, 1996; pp 1-985.
  9. Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, 3838. https://doi.org/10.1021/ja010172b
  10. Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A. M.; Sun, Y.-P. Nano Lett. 2002, 2, 311. https://doi.org/10.1021/nl010095i
  11. Azamian, B. R.; Davis, J. J.; Coleman, K. S.; Bagshaw, C. B.; Green, M. L. H. J. Am. Chem. Soc. 2002, 124, 12664. https://doi.org/10.1021/ja0272989
  12. Rege, K.; Raravikar, N. R.; Kim, D.-Y.; Schadler, L. S.; Ajayan, P. M.; Dordick, J. S. Nano Lett. 2003, 3, 829. https://doi.org/10.1021/nl034131k
  13. Jiang, K.; Schadler, L. S.; Siegel, R. W.; Zhang, X.; Zhang, H.; Terrones, M. Mater. Chem. 2004, 14, 37. https://doi.org/10.1039/b310359e
  14. Yim, T.-J.; Liu, J.; Lu, Y.; Kane, R. S.; Dordick, J. S. J. Am. Chem. Soc. 2005, 127, 12200. https://doi.org/10.1021/ja0541581
  15. Gomez, J. M.; Romero, M. D.; Fernandez, T. M. Catal. Lett. 2005, 101, 275. https://doi.org/10.1007/s10562-005-4904-4
  16. Prakash, R.; Superfine, R.; Falvo, M. R. Appl. Phys. Lett. 2006, 88, 063102. https://doi.org/10.1063/1.2171802
  17. Heering, H. A.; Williams, K. A.; de Vries, S.; Dekker, C. Chem. Phys. Chem. 2006, 7, 1705.
  18. Reich, S.; Thomsen, C.; Ordejon, P. Phys.Rev. B 2002, 65, 155411. https://doi.org/10.1103/PhysRevB.65.155411
  19. Girifalco, L.; Hodak, M.; Lee, R. S. Phys. Rev. B 2000, 62, 13104. https://doi.org/10.1103/PhysRevB.62.13104
  20. Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Science 2003, 300, 2072. https://doi.org/10.1126/science.1082289
  21. Price, B. K.; Hudson, J. L.; Tour, J. M. J. Am. Chem. Soc. 2005, 127, 14867. https://doi.org/10.1021/ja053998c
  22. Kragl, U.; Eckstein, M.; Kaftzik, N. Curr. Opin. Biotechnol. 2002, 13, 565. https://doi.org/10.1016/S0958-1669(02)00353-1
  23. Park, S.; Kazlauskas, R. J. Curr. Opin. Biotechnol. 2003, 14, 432. https://doi.org/10.1016/S0958-1669(03)00100-9
  24. van Rantwijk, F.; Sheldon, K. R. A. Chem. Rev. 2007, 107, 2757. https://doi.org/10.1021/cr050946x
  25. Cantone, S.; Hanefeld, U.; Basso, A. Green Chem. 2007, 9, 954. https://doi.org/10.1039/b618893a
  26. Lyu, S. C.; Liu, B. C.; Lee, T. J.; Liu, Z. Y.; Yang, C. W.; Park, C. Y.; Lee, C. J. Chem. Commun. 2003, 734.
  27. Liu, B. C.; Lyu, S. C.; Jung, S. I.; Kang, H. K.; Yang, C.-W.; Park, J. W.; Park, C. Y.; Lee, C. J. Chem. Phys. Lett. 2004, 383, 104. https://doi.org/10.1016/j.cplett.2003.10.134

Cited by

  1. Reversible immobilization of glucoamylase onto magnetic carbon nanotubes functionalized with dendrimer vol.91, pp.3, 2011, https://doi.org/10.1007/s00253-011-3299-y
  2. Immobilization of laccase on carbon nanomaterials vol.29, pp.10, 2012, https://doi.org/10.1007/s11814-012-0024-1
  3. Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells vol.35, pp.6, 2012, https://doi.org/10.1007/s00449-011-0673-1
  4. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production vol.97, pp.1, 2013, https://doi.org/10.1007/s00253-012-4535-9
  5. Immobilization and enhanced catalytic activity of lipase on modified MWCNT for oily wastewater treatment vol.35, pp.5, 2016, https://doi.org/10.1002/ep.12375
  6. Recent trends in nanomaterials immobilised enzymes for biofuel production vol.36, pp.1, 2016, https://doi.org/10.3109/07388551.2014.928811
  7. A review on the important aspects of lipase immobilization on nanomaterials vol.64, pp.4, 2017, https://doi.org/10.1002/bab.1515
  8. Immobilization of enzymes onto carbon nanotubes vol.65, pp.4, 2011, https://doi.org/10.2298/HEMIND110330028P
  9. Nano-Immobilized Biocatalysts for Biodiesel Production from Renewable and Sustainable Resources vol.8, pp.2, 2018, https://doi.org/10.3390/catal8020068
  10. SE3-PB isolated from lipid-rich wastewater pp.1532-2297, 2018, https://doi.org/10.1080/10826068.2018.1514517
  11. A newly high alkaline lipase: an ideal choice for application in detergent formulations vol.10, pp.None, 2010, https://doi.org/10.1186/1476-511x-10-221
  12. Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: an overview vol.3, pp.24, 2010, https://doi.org/10.1039/c3ra22945a
  13. Screening and Characterization of Halophilic Bacteria With Industrial Enzymes from Salt Lake Razazah, Karbala, Iraq vol.14, pp.2, 2017, https://doi.org/10.13005/bbra/2476
  14. Immobilization of Lipase Enzyme Carbon Nanotubes via Adsorption vol.495, pp.None, 2010, https://doi.org/10.1088/1757-899x/495/1/012055
  15. Purification effect and microorganisms diversity in an Acorus calamus constructed wetland on petroleum-containing wastewater vol.32, pp.1, 2010, https://doi.org/10.1080/26395940.2019.1711200