• Title/Summary/Keyword: N-Acetylmuramoyl-L-alanine amidase

Search Result 3, Processing Time 0.02 seconds

Isolation of N-Acetylmuramoyl-L-Alanine Amidase Gene (amiB) from Vibrio anguillarum and the Effect of amiB Gene Deletion on Stress Responses

  • Ahn Sun-Hee;Kim Dong-Gyun;Jeong Seung-Ha;Hong Gyeong-Eun;Kong In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1416-1421
    • /
    • 2006
  • We identified a gene encoding the N-acetylmuramoyl L-alanine amidase (amiB) of Vibrio anguillarum, which catalyzes the degradation of peptidoglycan in bacteria. The entire open reading frame (ORF) of the amiB gene was composed of 1,722 nucleotides and 573 amino acids. The deduced amino acid sequence of AmiB showed a modular structure with two main domains; an N-terminal region exhibiting an Ami domain and three highly conserved, continuously repeating LysM domains in the C-terminal portion. An amiB mutant was constructed by homologous recombination to study the biochemical function of the AmiB protein in V. anguillarum. Transmission electron microscopy (TEM) revealed morphological differences, and that the mutant strain formed trimeric and tetrameric unseparated cells, suggesting that this enzyme is involved in the separation of daughter cells after cell division. Furthermore, inactivation of the amiB gene resulted in a marked increase of sensitivity to oxidative stress and organic acids.

Genome sequence of Bifidobacterium dentium strain ATCC 15424 originally isolated from pleural fluid of an empyema patient (농흉 환자의 흉막액에서 분리된 Bifidobacterium dentium strain ATCC 15424의 유전체 염기서열 해독)

  • Moon, Ji-Hoi;Kim, Suegene;Yang, Seok Bin;Jang, Eun-Young;Shin, Seung-Yun;Lee, Jin-Yong;Lee, Jae-Hyung
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.280-282
    • /
    • 2019
  • We present here a draft genome sequence of Bifidobacterium dentium strain ATCC 15424, originally isolated from pleural fluid of an empyema patient. The genome is 2,625,535 bp in length and has a GC content of 58.5%. The genome includes 2,154 protein-coding genes, 4 rRNAs, and 55 tRNAs. Unlike other B. dentium strains isolated from human dental caries, ATCC 15424 carries 247 strain-specific genes, including prophage remnants and type III/IV secretion system proteins, N-acetylmuramoyl-L-alanine amidase, and PRTRC system protein E. The sequence information will contribute to understanding of the natural variation of B. dentium as well as the genome diversity within the bacterial species.

Isolation and Characterization of a Weizmannia coagulans Bacteriophage Youna2 and Its Endolysin PlyYouna2

  • Bokyung Son;Youna Kim;Booyoung Yu;Minsuk Kong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1050-1056
    • /
    • 2023
  • Weizmannia coagulans (formerly Bacillus coagulans) is Gram-positive, and spore-forming bacteria causing food spoilage, especially in acidic canned food products. To control W. coagulans, we isolated a bacteriophage Youna2 from a sewage sludge sample. Morphological analysis revealed that phage Youna2 belongs to the Siphoviridae family with a non-contractile and flexible tail. Youna2 has 52,903 bp double-stranded DNA containing 61 open reading frames. There are no lysogeny-related genes, suggesting that Youna2 is a virulent phage. plyYouna2, a putative endolysin gene was identified in the genome of Youna2 and predicted to be composed of a N-acetylmuramoyl-L-alanine amidase domain (PF01520) at the N-terminus and unknown function DUF5776 domain (PF19087) at the C-terminus. While phage Youna2 has a narrow host range, infecting only certain strains of W. coagulans, PlyYouna2 exhibited a broad antimicrobial spectrum beyond the Bacillus genus. Interestingly, PlyYouna2 can lyse Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, Pseudomonas putida and Cronobacter sakazakii without other additives to destabilize bacterial outer membrane. To the best of our knowledge, Youna2 is the first W. coagulans-infecting phage and we speculate its endolysin PlyYouna2 can provide the basis for the development of a novel biocontrol agent against various foodborne pathogens.