• Title/Summary/Keyword: N fertilizer

Search Result 1,961, Processing Time 0.03 seconds

Varietal Differences of Rice in Yield Response of Nitrogen Fertilizer (수도(水稻)에 대(對)한 질소시비반응(窒素施肥反應)의 품종간(品種間) 차이(差異))

  • Lee, Choon-Soo;Shin, Cheol-Woo;Kwak, Han-Kang;Lee, Kang-Man;Ahn, Yoon-Soo;Park, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.208-214
    • /
    • 1985
  • An attempt to evaluate yield response and efficiency of N fertilizer was made with the data obtained from various rice cultivars during 1978 to 1983. 1. The optimum rate of N fertilizer for maximum yield varied from 13.9 to 28.0 kg/10a with rice varieties. 2. The cultivars with high optimum N levels were high in N content (straw) and N uptake (straw+grain) at harvesting stage, but low in production efficiency and use efficiency of N. 3. The yield increment at the optimum rates of N in comparison with no N application among the rice varieties were 29-101%. 4. The cultivars with hish yield increment at optimum rate were high in the N content (straw+grain), and production efficiency at harvesting stage.

  • PDF

Effect of Fertilizer N Application and Bradyrhizobium sp. (Vigna) Inoculation on Symbiotic N2 Fixation of Peanut at Newly Reclaimed Soil (신개간지(新開墾地)에서 질소시비(窒素施肥)와 근류균(根瘤菌) 접종(接種)이 땅콩의 질소고정(窒素固定)에 미치는 영향(影響))

  • Lee, Sang-Bok;Cho, Youn-Hee;Kim, Moo-Ki;Park, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.220-226
    • /
    • 1990
  • This experiment was carried out to study the effects of Bradyrhizobium moculation and fertilizer N application on symbiotc $N_2$ fixation of peanut (Arachis hypogaea L. cv. Younghotangkong) at newly reclaimed soil. Treatments consisting of B. sp. (Vigna) HCR-3 and HCR-46 with control and five levels of nitrogen (0, 4, 8, 16, 32kg/10a) were arranged with split design of four repetitions. The results obtained were as follows. The number of viable Bradyrhizobium in rhizosphere was decreased to 20 days after sowing and thereafter it was remarkably increased, until full ripe stage of pods, decreased as fertilizern rates increased. Nodulation and nitrogenase activity were reduced with increasing levels of fertilizer, whereas top dry matter and nitrogen accumulation where increased. Seed yield of Bradyhizobium inoculation under the fertilizer N zero level was similar to that N : 8kg/10a under uninoculation. It suggested that Bradyrhizobium inoculation could replace the effect of nitrogen application.

  • PDF

Combined Effects of Container Volume and Fertilizer Level on Plant Growth, Physiological Characteristics, and Nutrient Uptake of Vinca Plant (Catharanthus roseus)

  • Kang, Jong-Goo;Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.268-274
    • /
    • 2010
  • The aim of our study was to investigate the interactive effects of container size and nutrient supply on plant growth, chlorophyll synthesis, transpiration, $CO_2$ assimilation, water use efficiency (WUE), and nutrient uptake of vinca plant (Catharanthus roseus). A complete experiment utilizing four concentrations of fertilizer and three volumes of containers was conducted. As the container size was increased, the plant height, leaf area, and dry weight of vinca significantly increased regardless of fertilizer level. The leaf area and dry weight of vinca were highly sensitive to the container size. However, the chlorophyll contents of vinca 20 days after the transplant significantly increased with decreasing container sizes and increasing fertilizer concentrations. Significant differences in transpiration and $CO_2$ assimilation occurred with the use of differentfertilizer solutions, but the highest values for transpiration and $CO_2$ assimilation were in plants grown in the 15 cm-diameter containers. The highest water use efficiency was observed in the plants grown in 10 cm-containers with 4 dS/m of fertilizer, and there were no significant differences in WUE values among container sizes with fertilizer concentrations of 0, 1, or 2 dS/m. No significant difference in nutrient uptake was observed among the fertilizer levels or among the container sizes. However, at a fertilizer concentration of 4 dS/m, the uptake of several nutrients, including N, P, K, Ca, Mg, B and Fe, was higher in small containers than in larger ones.

Growth and Yield of Rice Affected by Slow Release Nitrogen Fertilizer Mixed with Soil in Seedling Box and Incorporated into Paddy Soil (육묘상자와 본답에 전층시비한 완효성 질소비료가 벼의 생육과 수량에 미치는 영향)

  • Lee, Suk-Soon;Lee, Dong-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.218-224
    • /
    • 2001
  • To find out the optimum level of slow release N fertilizers (MS 10, MS S10, LCU 80, and LCU 100), total amount of nitrogen required throughout the growing season were applied in the seedling box or incorporated into paddy soil. Four levels of the slow release N fertilizers (0, 6, 9 and 12 kg N/10 a) were mixed with commercial rice nursery bed soil. N release rate and electrical conductivity(EC) of the slow release fertilizers were greater in the order of MS 10 > LCU 80 ${\fallingdotseq}$ LCU 100 > MS S10 and higher as temperature increased. No seedlings were emerged in all MS 10 plots. The seedling emergence rate of LCU 80 and LCU 100 decreased as the N level increased and seedlings were wilted severely on the 13th day after sowing at 9 and 12 kg N/10 a. In MS S10 plots the emergence rate was higher than 80% at all N levels and seedling growth was normal until 30 days after sowing. Yield of rice was similar between seedling box application and soil incorporation in paddy of MS S10. Yield of rice among the 6, 9, 12 kg N/10 a of MS S10 and conventional 12 kg N/10 a of urea split application was similar, but it was significantly higher compared with no N plot. Fertilizer N recovery of MS S10 decreased as fertilizer level increased and it was significantly higher compared with conventional urea split application.

  • PDF

Nitrogen Recovery of Foliar Applied Urea by Satsuma Mandarins (요소 엽면시비에 따른 온주밀감의 질소회수율)

  • Kang, Young-Kil;U, Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.132-139
    • /
    • 1999
  • A field experiment was conducted at Cheju from early March 1998 to early March 1999 to evaluate the effects of foliar applied urea on leaf N content and N recovery in satsuma mandarins (Citrus unshiu Marc.). Seven years old 'Okitsu Wase' trees received foliar spray of urea (22 or 43 g N $tree^{-1}yr^{-1}$) or soil application of urea (86 g N $tree^{-1}yr^{-1}$). 56% of N was applied in spring, 11% in summer and 33% in fall. There were seven trees per N treatment and two trees per N treatment received $^{15}N$-labeled urea in spring and summer to determine N recovery. There were no differences between the treatments for fruit yield and its quality. Nitrogen content of spring flush leaf blades up to early September was greater for trees received foliar spray comparing with soil application but was not greatly affected by any treatment after mid-November. The recovery of fertilizer N in various parts of trees receiving foliar spray of 22 g N $tree^{-1}yr^{-1}$ was greatest, followed by receiving foliar spray of 43 g N and soil application of 86 g N. The recovery of fertilizer N in tree was 29.2 and 17.7% for foliar spray of 22 and 43 g N $tree^{-1}yr^{-1}$, respectively and 8.0% for soil application of 86 g N $tree^{-1}yr^{-1}$. The recovery of fertilizer N in the upper 40 cm of soil was 50.3, 45.6, and 51.8% for foliar spray of 22 and 43 g N $tree^{-1}yr^{-1}$, and soil application of 86 g N $tree^{-1}yr^{-1}$ respectively. The total (tree, fallen leaves, winter weeds, and soil) recovery of fertilizer N was 81.8, 65.1, and 60.6% for foliar spray of 22 and 43 g N $tree^{-1}yr^{-1}$, and soil application of 86 g N $tree^{-1}yr^{-1}$, respectively.

  • PDF

Kinetic Responses of Soil Carbon Dioxide Emission to Increasing Urea Application Rate

  • Lee, Sun-Il;Lim, Sang-Sun;Lee, Kwang-Seung;Kwak, Jin-Hyeob;Jung, Jae-Woon;Ro, Hee-Myoung;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • BACKGROUND: Application of urea may increase $CO_2$ emission from soils due both to $CO_2$ generation from urea hydrolysis and fertilizer-induced decomposition of soil organic carbon (SOC). The objective of this study was to investigate the effects of increasing urea application on $CO_2$ emission from soil and mineralization kinetics of indigenous SOC. METHODS AND RESULTS: Emission of $CO_2$ from a soil amended with four different rates (0, 175, 350, and 700 mg N/kg soil) of urea was investigated in a laboratory incubation experiment for 110 days. Cumulative $CO_2$ emission ($C_{cum}$) was linearly increased with urea application rate due primarily to the contribution of urea-C through hydrolysis to total $CO_2$ emission. First-order kinetics parameters ($C_0$, mineralizable SOC pool size; k, mineralization rate) became greater with increasing urea application rate; $C_0$ increased from 665.1 to 780.3 mg C/kg and k from 0.024 to 0.069 $day^{-1}$, determinately showing fertilizer-induced SOC mineralization. The relationship of $C_0$ (non-linear) and k (linear) with urea-N application rate revealed different responses of $C_0$ and k to increasing rate of fertilizer N. CONCLUSION(s): The relationship of mineralizable SOC pool size and mineralization rate with urea-N application rate suggested that increasing N fertilization may accelerate decomposition of readily decomposable SOC; however, it may not always stimulate decomposition of non-readily decomposable SOC that is protected from microbial decomposition.

Growth of Creeping Bentgrass after Application of Microbial Fertilizer Containing Saccharomyces cerevisiae HS-1 and Streptococcus thermophiles HS-2 (Saccharomyces cerevisiae HS-1와 Streptococcus thermophiles HS-2 함유 복합 미생물비료 처리 후 크리핑 벤트그래스의 생육)

  • Young-Sun Kim;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.286-296
    • /
    • 2023
  • This study was conducted to evaluate the effects of soil microbial fertilizer (SMF) containing Saccharomyces cerevisiae HS-1 and Streptococcus thermophiles HS-2 on the growth of creeping bentgrass. For the pot experiment, the treatments were as follows: no fertilizer (NF), control (3 N g/m2/month), SMF-1 (control+SMF 2 mL/m2/time), and SMF-2 (control+SMF 4 mL/m2/time). For the plot experiment, the treatments were as follows: NF, control, SMFp-1 (control+SMF 1 mL/m2/time), SMFp-2 (control+SMF 2 mL/m2/time), and SMFp-3 (control+SMF 4 mL/m2/time). In the pot experiment, visual turfgrass quality and the uptake amount of nitrogen (N) and potassium (K) were increased under the SMF treatments, whereas the content of chlorophyll (a, b, and a+b) and clipping yield were not considerably different compared with the control. In the pot experiment, the amount of SMF positively correlated with visual turfgrass quality and uptake amount of N and K. In the plot experiment, turfgrass density was increased by 12.9-19.2% under SMFp treatments compared with the control. These results indicated that the application of SMF containing Sa. cerevisiae HS-1 and St. thermophiles HS-2 improved the quality, density, and growth of creeping bentgrass via prompting the uptake of N and K.

Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments

  • Kim, Myung Sook;Kim, Yoo Hak;Park, Seong Jin;Lee, Chang Hoon;Yun, Sun Gang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • The objectives of this study were to monitor the changes in soil solution nutrients and to evaluate their effect on rice uptake and yield. The changes of chemical characteristics of paddy soil solution were examined from the 58th fertilization experiment in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (No fert.), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPKC) and inorganic fertilizer plus silicate and lime fertilizer as a soil amendment (NPKCLS). The fertilizers were added at rates of standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), potassium ($K_2O$), and sililcate ($SiO_2$) were applied at rates of $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, and $7.5Mg\;ha^{-1}$ respectively and lime was applied to neutralize soil acidity until 6.5. Average Electrical Conductivity (EC) of soil solution in NPKCLS and NPKC ranged from 1.16 to $2.00dS\;m^{-1}$. The $NH{_4}^+$ and $K^+$ levels in NPKCLS and NPKC were higher than that of the other treatments, due to high supply power of rice straw compost. The content of $H_3SiO{_4}^-$ was higher in NPKCLS because of silicate application. The dominant ions in soil solution were $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ among cations and $HCO{_3}^-$, $SO{_4}^{2-}$, and $Cl^-$ among anions in all treatments. The continuous application of inorganic fertilizers plus rice straw compost (NPKC) and silicate fertilizer (NPKCLS) led to the changes of various chemical composition in soil solutions. Also, they had a significant impact on the improvement of rice inorganic uptake and grain yield. Especially, inorganic uptake by rice in NPKC and NPKCLS significantly increased than those in NPK plot; 14~46% for T-N, 32~36% for P, 43~57% for K, and 45~77% for Si. Therefore, the combined application of inorganic fertilizers with organic compost as a soil amendment is considered as the best fertilization practice in the continuous rice cropping for the improvement of crop productivity and soil fertility.

Effect of the Slow-releasing Fertilizer Applied Directly to Rice Seedling Tray Before Transplanting and Practical Test at Field (이앙직전 벼 육묘상자 살포용 완효성 비료의 처리 효과)

  • Chi, Jeong-Hyun;Choi, Byoung-Rourl;Jo, Gwang-Lae;Kim, Soon-Jae;Park, Kyeong-Yeol;Kwon, O-Youn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • The newly developed fertilizer is the slow-releasing fertilizer which can be used as a basal fertilizer without no additional fertilization at tillering stage. It has 30-4-6% of $N-P_2O_5-K_2O$ and was coated with mixture of LDPE (Low density polyethylene), EVA (Ethylene vinyl acetate), BDP (Bio degraded polymer), TALC and nonionic surfactant for the controlled release up to 50 days after application. Coating materials were designed to be decomposed naturally. This fertilizer can be applied directly to the seedling tray mechanically just before transplanting, resulting in significant labor saving effect. The developed slow-release fertilizer, which can replace both basal fertilization and top dressing at tillering stage by single application directly to seedling tray, showed the highest release at 14~21 days after transplanting. Considering the plant growth at different growth stages and yield, the optimal application rate of developed slow-release fertilizer was 300 g per rice nursery tray and the yield of rice at this application rate was 5.25 MT/ha. Rice quality in terms of head rice grain ratio, amylose content, whiteness, and taste value decreased as fertilization rate increased from 200 g to 500 g per nursery tray. Fertilization rate based on quantity of fertilizer ingredients (N, P, K) was reduced by 49.3% compared to the standard application rate and there was 49.2% reduction in labor input for fertilization.

Effect of Major Climatic Factors on Optimum Level of N-Fertilizer in Paddy Rice Soil (주요기상인자(主要氣象因子)가 벼의 질소시비량(窒素施肥量)에 미치는 영향(影響))

  • Lee, Choon-Soo;Kwak, Han-Kang;Hwang, Ki-Sung;Park, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.17-22
    • /
    • 1987
  • An analysis was made on optimal N fertilizer for high yielding and ordinary rice varieties and their dependence upon the climatic conditions during growth stage in 1971-1979. The results obtained were summarized as follows; 1. The coefficient of variation for optimum N rates were 19.1% for high yielding varieties and 21.9% for ordinary varieties. And the those of yields at optimum N levels were 7.0% for high yielding varieties and 9.9% for ordinary varieties. 2. Optimum N fertilizer rates for high yielding varieties were 22.4kg/10a in favorable climatic years and 16.1kg/10a in unfavorable climatic years. As for ordinary varieties, optimum N levels were 19.2kg/10a in favorable climatic years and 13.0kg/10a in unfavorable climatic years. Accordingly, more N should be applied in favorable climatic years regardless of varieties. 3. This difference was derived from sunshine hours, rainfall, and relative humidity. Optimum N rates were correlated positively with sunshine hours, and negatively with rainfall and relative humidity.

  • PDF