• 제목/요약/키워드: N and P Removal

검색결과 998건 처리시간 0.021초

하수의 N/P 비가 Botryococcus braunii 증식과 영양염류제거에 미치는 영향 (Effect of N/P Ratio on the Biomass Productivity and Nutrient Removal in the Wastewater using Botryococcus braunii)

  • 최희정;이승목
    • 대한환경공학회지
    • /
    • 제36권9호
    • /
    • pp.609-613
    • /
    • 2014
  • 본 연구는 미세조류 생장에 중요한 영향인자인 N/P ratio가 미세조류의 생장과 하수의 영양염류 제거에 미치는 영향을 알아보고자 하였다. 실험을 위하여 1-70까지의 다양한 N/P ratio를 준비하였으며, 미세조류는 Botryococcus braunii를 사용하였다. 실험결과 바이오매스 생산을 위하여 필요한 N/P ratio는 5-30이었다. TN의 제거율은 N/P ratio 1-30까지는 82%, 31-70까지는 73-78%의 제거율을 나타내어 TN 제거를 위한 N/P ratio는 1-30까지가 가장 좋았다. TP의 제거율 N/P ratio 1-20까지는 80% 이상의 높은 제거율을 나타내었지만, 20 이상부터는 급격하게 하락하여 50 이상에서는 22% 정도의 제거율로 변화가 없이 일정하였다. 따라서 바이오매스 생산량과 하수에서의 TN, TP의 제거를 위한 N/P ratio는 1-30이 가장 좋은 비율로 나타났다. TN, TP 제거율과 바이오매스의 생산량 상관관계는 TP 제거율과 바이오매스 생산량의 상관계수가($R^2$) 0.9126으로 상관관계가 매우 높았으나, TN 제거율과 바이오매스 생산량과의 상관관계는 찾을 수가 없었다. 이는 하수에서 TP의 함량이 TN의 함량보다 바이오매스 생산량에 밀접한 관계가 있음을 알 수 있다.

천연 Zeolite와 산화철을 이용한 폐수 중 질소 및 인의 처리 (Removal Nitrogen and Phosphorus from Wastewater using Natural Zeolite and Iron Oxide)

  • 원성연;이상일
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.104-109
    • /
    • 2004
  • Removal of nutrients from domestic sewage or industrial wastewater is needed to protect surface waters from eutrophication. This research was carried out to remove the nitrogen (N) and phosphorus (P) from the wastewater using the iron oxide obtained from the steel industry and the natural zeolite, respectively. This research was conducted in both batch and continuous systems. The removal efficiency of the nutrients was evaluated in the batch system using the varying concentrations of zeolite and iron oxide added. The removal efficiency of N was 60% at the 8g of zeolite added. In the same condition, the removal efficiencies of N were 76% and 82% at 12g and 16g of zeolite added, respectively. Removal efficiency of P was 80% as 8g of iron oxide was added. The removal efficiency of P was correspondingly increased as the concentration of iron oxide was increased. Continuous column system was also used to evaluate the removal efficiency of N and P by the addition of zeolite and ferric oxide, respectively. Removal efficiencies of N were compared in the mixed packing, two stage, and four stage columns, respectively. The removal efficiencies (80%) of N in the separate packed columns (two and four stages) were higher than the mixed packing column (400%) after 90 hr. Whereas, the removal efficiencies of P were similar to each other in the three columns.

영양염류 제거를 위한 생물막 공정의 적용에 관한 연구 (A Study on apply of submerged biofilter for nutrient removal)

  • 안승섭
    • 한국환경과학회지
    • /
    • 제9권5호
    • /
    • pp.415-422
    • /
    • 2000
  • In this study the removal possibility of nutrients of T-P, NH3-N, NO3-N and T-N is examined through a positive experimental study using submerged biofilter of media packing channel method. From the analysis of nutrients removal efficiency for each run of the collected sample following results are obtained. Firstly the result of N/P surveying for inflow shows serious value that excess the limit value of 20 as the values are in the range of 12.0~42.7 and the average is 25.73. Secondly the highest concentration of the incoming NH3-N reaches double of the standard since the concentrations of NH3-N and NO3-N for inflow shows 0.06mg/$\ell$ and 2.5~3.8mg/$\ell$ respectively and the average removal rate which passed the submerged biofilter adopted in this study is a satisfactory level. Next the average removal rate of T-P of 51.5% shows the possiblity of entrophication removal since the removal rate of T-P of 66.8~68.8% in relative low temperature period of RUN 1~2 appeared higher than in RUN 3~6 and T-N shows relatively poor result with the average removal rate of 34.1% And it is known that the bigger BOD/P and BOD/N are the more removal rate increases from the examination result of the relation between BOD/P and BOD/N and the treatment water T-P and T-N to decide the relation with the concentration of organic matters and though that the appropriate proportion is necessary for effective removal of nitrogen and phsophorus.

  • PDF

BNR에 의한 하수의 고도처리에 미치는 NH3 스트리핑 전처리의 영향 (Effect of Pre-NH3 Stripping on the Advanced Sewerage Treatment by BNR)

  • 서정범;안광호
    • 한국물환경학회지
    • /
    • 제22권5호
    • /
    • pp.846-850
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to increase influent C/N ratio by ammonia stripping without required carbon source and for improving treatment efficiencies of sewerage by the combination process of ammonia stripping and BNR (StripBNR). The results of this study were summarized as follows. BOD removal efficiencies of BNR and StripBNR were 95.3% and 93.2%, respectively. T-N and T-P removal efficiencies of BNR were 53.3% and 40.8%, respectively. T-N and T-P removal efficiencies of StripBNR were 72.8% and 62.9%, respectively. Concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at BNR effluent were 0.03 mg/L, 0.08 mg/L and 9.12 mg/L, respectively. On the other hands, concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at StripBNR effluent were 5.79 mg/L, 0.01 mg/L and 0.14 mg/L, respectively. Consequently, influent C/N ratio of BNR process was increased by ammonia stripping. Removal efficiency of T-N and T-P was improved about 20% by the process of StripBNR.

철 전기분해장치와 무산소/호기공정을 결합한 질소, 인제거 특성에 관한 연구 (A Characteristic of Nitrogen and Phosphorus Removal in Anoxic/Oxic Basins combined with Iron Electrolysis)

  • 김영규
    • 한국환경보건학회지
    • /
    • 제43권6호
    • /
    • pp.525-531
    • /
    • 2017
  • Objectives: The purpose of this experiment is to better understand the nitrogen and phosphorus removal ratio according to operating conditions in an iron electrolysis system consisting of an anoxic basin, aerobic basin, and iron precipitation apparatus. Methods: Iron electrolysis consists of an iron precipitation reactor composed of iron plates in oxic and anoxic basins. We studied the interrelation coefficient between T-N and T-P removal rates and F/M ratio, and the C/N ratio and BOD removal rate. Results: The F/M ratio and the T-N and T-P removal rate per unit area have interrelation coefficients of 0.362 and 0.603, respectively. The removal rate per MLVSS and the T-N and T-P removal rate per unit area have respective interrelation coefficients of 0.49 and 0.59. Conclusions: The removal rate of T-N and T-P increased with the increasing F/M ratio in the influent, and they also linearly increased in proportion to the C/N ratio of influent and BOD removal rate of the reactor.

콩(Glycine max Merr)유묘를 이용한 수질정화에 관한 연구 (Studies on the Water Purification Using Glycine max Merr Seedling)

  • 김순진;나규환
    • 한국환경보건학회지
    • /
    • 제23권1호
    • /
    • pp.50-54
    • /
    • 1997
  • The removal efficiency of nutrient was investicated by using Glycine max Meer seedling. After budding, Glycine max Merr was raised at darkness for 4 days. During cultivation, the removal efficiency of $NO_2-N+NO_3-N$ was up to 90% with initial concentration of 20-100 ppm. The removal efficiency of PO$_4$-P was up to 80% with initial concentration at 30 ppm, but it was down to 22% and 27% at 40 ppm and 50 ppm. When the removal efficiency of nutrient was compared with alternating 12 hours' light and darkness, the removal efficiency of NO$_2$-N + NO$_3$-N was up to 90% at below 60 ppm. It was not different from each other. But it was particularly low about 62% and 34% at 80 ppm and 100 ppm in alternating 12 hours' light. The removal efficiency of PO$_4$-P was low at alternating 12 hours' light between 10-50 ppm on the whole range. The neutralizing capacity of pH was shown in acidity and alkalinity except strong acidity(below pH 3). The initial pH was neutralized at 6.0-7.7 of pH after 4 days. Particularly, Glycine max Meer seedling that was difference from other water plants, was shown the neutralizing capacity in strong alkalinity.

  • PDF

고농도의 질소와 인제거를 위한 Struvite 정석반응의 정석재로서 산업부산물의 이용 가능성 (Feasibility of Industrial by-products as a Seed Crystal of Struvite Crystallization for the Removal of Highly Concentrated Nitrogen and Phosphorus)

  • 임수빈
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.664-672
    • /
    • 2010
  • This study was performed to evaluate the feasibility of industrial by-products such as converter slag, olivine, red mud and fly ash as a seed crystal of struvite crystallization for the removal of highly concentrated $NH_4-N$ and $PO_4-P$. In the kinetic experiments, more than 90% of $NH_4-N$ and $PO_4-P$ was eliminated by struvite crystallization within 30 minutes of reaction time. The pH range in meta-stable region of struvite crystallization was found to be pH 7.0~9.0 under the Mg:N:P=1:1:1 equi-molar condition with 100 mg/L of $NH_4-N$. Total removal efficiencies of $NH_4-N$ and $PO_4-P$ by both struvite precipitation and crystallization were increased with the increase of pH. Removal efficiencies of $NH_4-N$ and $PO_4-P$ were significantly enhanced by struvite crystallization using industrial by-products as a seed crystal compared with those by struvite precipitation without seed crystal. Red mud, converter slag, olivine and fly ash enhanced the removal efficiencies of $NH_4-N$ by 40.9%, 37.7%, 28.4% and 16.4%, respectively. Removal efficiencies of $PO_4-P$ for converter slag, red mud, fly ash, olivine were increased by 3.7 times, 2.6 times, 72.4% and 68.0%, respectively. Converter slag and red mud showed higher feasibility as a seed crystal than others for the removal of highly concentrated $NH_4-N$ and $PO_4-P$. In particular, converter slag might have a high capacity of phosphorus removal.

연속 회분식 반응조의 최적 운전시스템에 관한 연구 (Study on the optimum operation system of Sequencing Batch Reactor)

  • 엄태규;고은주
    • 상하수도학회지
    • /
    • 제13권4호
    • /
    • pp.54-61
    • /
    • 1999
  • SBR process used to evaluate the removal of organics, nitrogen and phosphorus on the basis of a report of research on a precedence at various operation cycle and condition change. Effluent concentration of COD were 50mg/l, 50mg/l, 90mg/l respectively, The removal rates of COD were nearly over 95% at Run 1, 2 and 4. But at Run 3, Effluent concentration of COD was 255.0mg/l, The removal rate of COD was 87% at Run 3. As Oxic/Anoxic rate was fixed and operating cycle of Oxic/Anoxic was changed, the removal rates of T-N were 74.7%, 46.9%, 28.5%, 63.3% respectively at Run 1~4. The case of Run 1 was best result. The removal rates of T-P was appeared in proportion to T-N removal rates and rest of $NO_2-N$. The removal rates of T-P were 51.2%, 35.5%, 41.5%, 51.9% respectively. The removal rates of COD, T-N, T-P were influenced on the change of SBR operation cycle. As organic loading rate was $1.43kgCOD/m^3day$ and C/N ratio was 3.0, operation cycle of Run 1 was best condition of T-N removal rates and T-P removal.

  • PDF

N, P 농도에 따른 Chlorella vulgaris의 성장 및 하수고도처리능 평가 (Advanced wastewater treatment capacity and growth of Chlorella vulgaris by nitrogen and phosphorus concentrations)

  • 한수현;이윤희;황선진
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.77-82
    • /
    • 2013
  • The growth and removal capacity of nitrogen and phosphorus of Chlorella vulgaris were evaluated in artificial wastewater with different nitrogen and phosphorus concentrations as element growing components for microalgae growth. The nitrogen concentration was varied in 9, 15, 30 and 60 mg-N/L with fixed phosphorus concentration of 3 mg-P/L. The growth and phosphorus removal capacity of C. vulgaris were high at initial nitrogen concentration of 15 and 30 mg-N/L, and the corresponding N/P ratios calculated were 5 and 10. In the case of varying in 1.5, 3, 6 and 10 mg-P/L of phosphorus concentration with fixed nitrogen concentration of 30 mg-N/L, the growth and removal capacity of nitrogen and phosphorus were excellent with phosphorus concentration of 3 and 6 mg-P/L. The corresponding N/P ratios were shown as 10 and 5. Therefore, the appropriate N/P ratio was concluded between 5 and 10 for wastewater treatment using C. vulgaris.

Biological Treatment of Nutrients and Heavy Metals in Synthetic Wastewater Using a Carrier Attached to Rhodobacter blasticus

  • Kim, Deok-Won;Park, Ji-Su;Oh, Eun-Ji;Yoo, Jin;Kim, Deok-Hyeon;Chung, Keun-Yook
    • 공업화학
    • /
    • 제33권6호
    • /
    • pp.666-674
    • /
    • 2022
  • The removal efficiencies of nutrients (N and P) and heavy metals (Cu and Ni) by Rhodobacter blasticus and R. blasticus attached to polysulfone carriers, alginate carriers, PVA carriers, and PVA + zeolite carriers in synthetic wastewater were compared. In the comparison of the nutrient removal efficiency based on varying concentrations (100, 200, 500, and 1000 mg/L), R. blasticus + polysulfone carrier treatment showed removal efficiencies of 98.9~99.84% for N and 96.92~99.21% for P. The R. blasticus + alginate carrier treatment showed removal efficiencies of 88.04~97.1% for N and 90.33~97.13% for P. The R. blasticus + PVA carrier treatment showed removal efficiencies of 18.53~44.25% for N and 14.93~43.63% for P. The R. blasticus + PVA + zeolite carrier treatment showed removal efficiencies of 26.65~64.33% for N and 23.44~64.05% for P. In addition, at the minimum inhibitory concentration of heavy metals, R. blasticus (dead cells) + polysulfone carrier treatment showed removal efficiencies of 7.77% for Cu and 12.19% for Ni. Rhodobacter blasticus (dead cells) + alginate carrier treatment showed removal efficiencies of 25.83% for Cu and 31.12% for Ni.