• Title/Summary/Keyword: Mytilus galloprovincialis

Search Result 53, Processing Time 0.022 seconds

Genetic Diversity of Polydora haswelli (Polychaeta, Spionidae) in Korean Shellfish using cox1 Marker (cox1 분자마커를 이용한 한국산 패류 천공성 다모류 Polydora haswelli (Polychaeta, Spionidae) 유전자 다양성 발굴)

  • Lee, Soon Jeong;Kim, Seung Min;Kwon, Mun Gyeong;Lee, Sang-Rae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.685-690
    • /
    • 2021
  • Harmful shell-boring species of the genus Polydora (Polychaeta: Spionidae) were frequently reported from commercially important mollusk species in Korea, Japan and China. The traditional approach based on the morphological characteristics showed limitations for species discrimination among shell-boring species. Therefore, DNA barcoding was adopted to identify Polydora species using molecular markers. Two Polydora species (P. haswelli and P. hoplura) in abalone shells were reported from our previous molecular phylogenetic study. In this study, we additionally reported the presence of shell-boring Polydora haswelli in commercially sold shellfish. The taxon-specific cox1 marker used in this study successfully allowed the isolation of P. haswelli from cockle Scapharca subcrenata, mussel Mytilus galloprovincialis, oyster Crassostrea gigas and scallop Argopecten irradians. Polydora hoplura was not found in these shellfish species. The genetic variations were found on the intraspecific level of P. haswelli and the same genotype was also detected in different shellfish species. This result can provide information on a new host and accurate parasitic Polydora species. Moreover, this report can be used as the biodiversity data of Polydora species on the invasion and transition of harmful Polydora species in mollusk aquaculture farms.

Analysis of Amnesic Shellfish Poisoning (ASP) in Shellfishes from Jinhae Bay in Korea (한국 진해만 해역 생산 패류 중 기억상실성패류독소 분석)

  • Seong Hae Cho;Dong Wook Kim;Hean Jae Yu;Yun Hye Cheon;Minchul Yoon;Jong Soo Mok;Ka Jeong Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.4
    • /
    • pp.321-326
    • /
    • 2024
  • This study analyzed domoic acid (DA), the causative agent of amnesic shellfish poisoning (ASP), in shellfish produced in Jinhae Bay, Korea. From January 2018 to December 2020, samples were collected at least once a month from 10 sites in Jinhae bay. This included 170 mussels Mytilus galloprovincialis and 241 oysters Crassostrea gigas. Domoic acid was detected in some samples in collected 2018 and 2019; however, all levels were significantly below the regulatory level of 20 mg/g. Domoic acid was not detected until 2020.Moreover, the detection trend of domoic acid did not show a clear correlation with the shellfish species or season. Calculation of body exposure to domoic acid through shellfish consumption showed that it was below the health-based guidance values in all cases. These results can be used as basic data on domoic acid in shellfish produced in shellfish growing areas and as policy data for the supply of safe seafood. In addition, considering the possibility of changes in marine biotoxins due to changes in aquatic environments, continuous monitoring is necessary.

Establishment of a Method for the Analysis of Diarrhetic Shellfish Poisoning by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS를 이용한 설사성패류독소의 분석조건 확립)

  • Lee, Ka-Jeong;Suzuki, Toshiyuki;Kim, Poong-Ho;Oh, Eun-Gyoung;Song, Ki-Cheol;Kim, Ji-Hoe
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.458-463
    • /
    • 2009
  • To establish and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the rapid and accurate quantitation of diarrhetic shellfish poisoning (DSP) toxins, we compared the results from different mobile phases and columns used for their analysis and collision energies for MS/MS experiments. Clear peaks of okadaic acid (OA) and dinophysistoxin-1 (DTX1) were obtained by using a mobile phase comprising aqueous acetonitrile containing 2 mM ammonium formate and 50 mM formic acid. The collision energies were optimized to facilitate the most sensitive detection for each toxin, namely, OA, DTX1, pectenotoxin-2 (PTX2), or yessotoxin (YTX). Further, the maximum ion response was obtained at a collision energy of 48 V for OA and DTX1. We compared the analytical performance of $C_8$ and $C_{18}$ columns. A wide range of toxins namely, OA, DTX1, PTX2, and YTX, except DTX3, were detected by both the columns. Although DTX3 was only detected by the $C_8$ column, we found that the $C_{18}$ column was also suitable for the quantitation of OA and DTX1 the toxins responsible for inducing diarrhea. The limit of detection of OA and DTX1 by the established LC-MS/MS conditions was 1 ng/g, and the limit of quantitation of the toxins under the same conditions was 3 ng/g. The process efficiencies were 91-118% for oysters (Crassostrea gigas) and 96-117% for mussels (Mytilus galloprovincialis) further, we observed no significant effect of matrix during the ionization process in LC-MS/MS. The comparison between mouse bioassay (MBA) and LC-MS/MS yielded varying results because low concentrations of OA and DTX1 were detected by LC-MS/MS in some shellfish samples, which provided positive results on MBA for DSP. The analysis time required by MBA for DSP analysis can be reduced by LC-MS/MS.