• Title/Summary/Keyword: Myofibroblast

Search Result 17, Processing Time 0.023 seconds

Anti-Fibrotic Effects of DL-Glyceraldehyde in Hepatic Stellate Cells via Activation of ERK-JNK-Caspase-3 Signaling Axis

  • Md. Samsuzzaman;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.425-433
    • /
    • 2023
  • During liver injury, hepatic stellate cells can differentiate into myofibroblast-like structures, which are more susceptible to proliferation, migration, and extracellular matrix generation, leading to liver fibrosis. Anaerobic glycolysis is associated with activated stellate cells and glyceraldehyde (GA) is an inhibitor of glucose metabolism. Therefore, this study aimed to investigate the anti-fibrotic effects of GA in human stellate LX-2 cells. In this study, we used cell viability, morphological analysis, fluorescence-activated cell sorting (FACS), western blotting, and qRT-PCR techniques to elucidate the molecular mechanism underlying the anti-fibrotic effects of GA in LX-2 cells. The results showed that GA significantly reduced cell density and inhibited cell proliferation and lactate levels in LX-2 cells but not in Hep-G2 cells. We found that GA prominently increased the activation of caspase-3/9 for apoptosis induction, and a pan-caspase inhibitor, Z-VAD-fmk, attenuated the cell death and apoptosis effects of GA, suggesting caspase-dependent cell death. Moreover, GA strongly elevated reactive oxygen species (ROS) production and notably increased the phosphorylation of ERK and JNK. Interestingly, it dramatically reduced α-SMA and collagen type I protein and mRNA expression levels in LX-2 cells. Thus, inhibition of ERK and JNK activation significantly rescued GA-induced cell growth suppression and apoptosis in LX-2 cells. Collectively, the current study provides important information demonstrating the anti-fibrotic effects of GA, a glycolytic metabolite, and demonstrates the therapeutic potency of metabolic factors in liver fibrosis.

Antifibrotic Effect of Curcumin in TGF-β1-Induced Myofibroblasts from Human Oral Mucosa

  • Zhang, Shan-Shan;Gong, Zhao-Jian;Li, Wen-Hui;Wang, Xiao;Ling, Tian-You
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.289-294
    • /
    • 2012
  • Background: Myofibroblasts play an important role in the development of oral submucous fibrosis (OSF). In the current study, we investigate the effect of curcumin on growth and apoptosis of myofibroblasts derived from human oral mucosa. Methods: Myofibroblasts were generated by incubating fibroblasts, obtained from human oral mucosa, with transforming growth factor-${\beta}1$ (TGF-${\beta}1$). MTT, PI staining, and FACS assays were used to investigate curcumin's effect on proliferation and cell cycle of fibroblasts and myofibroblasts. Annexin V/PI binding and FACS assays were used to examine apoptosis of myofibroblasts, Western blotting to determine the levels of Bcl-2 and Bax, and enzyme-linked immunosorbant assay was employed to examine the levels of collagen type I and III in the supernatants of myofibroblasts. Results: Curcumin inhibits proliferation of fibroblasts and myofibroblasts; it also disturbs the cell cycle, induces apoptosis and decreases the generation of collagen type I and III in myofibroblasts, which are more sensitive to its effects than fibroblasts. Curcumin induces apoptosis in myofibroblasts by down-regulating the Bcl-2/ Bax ratio. Conclusion: Our results demonstrate the antifibrotic effect of curcumin in vitro. It may therefore be a candidate for the treatment of OSF.

The Preventive Effect of Topical Zafirlukast Instillation for Peri-Implant Capsule Formation in Rabbits

  • Kang, Shin Hyuk;Shin, Kee Cheol;Kim, Woo Seob;Bae, Tae Hui;Kim, Han Koo;Kim, Mi Kyung
    • Archives of Plastic Surgery
    • /
    • v.42 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Background Capsular contracture is the most troublesome complication in breast implant surgery. Although capsule formation can be seen as a normal reaction to a foreign body, it can induce pain, hardness, deformity, and other pathologic problems. Surgical intervention is required in severe cases, but even surgery cannot guarantee a successful outcome without recurrence. This experimental study confirms that single topical administration of leukotriene antagonist zafirlukast (Accolate, Astrazeneca) reduces peri-implant capsule formation and prevents capsular contracture. Methods Twelve smooth-surfaced cohesive gel implants were implanted in New Zealand White rabbits. These miniature implants were designed to be identical to currently used products for breast augmentation. The rabbits were divided into 2 groups. In the experimental group (n=6), the implant and normal saline with zafirlukast were inserted in the submuscular pocket. In the control group (n=6), the implant and normal saline alone were used. Two months later, the implants with peri-implant capsule were excised. We evaluated capsule thickness and collagen pattern and performed immunohistochemical staining of myofibroblasts, transforming growth factor $(TGF)-{\beta}1$, 2. Results The thickness of the capsules in the experimental group was reduced in both dorsal and ventral directions. The collagen pattern showed parallel alignment with low density, and the number of myofibroblasts as well as the amounts of $TGF-{\beta}1$ and $TGF-{\beta}2$ were reduced in the experimental group. Conclusions We suggest that single topical administration of leukotriene antagonist zafirlukast can be helpful in reducing capsule formation and preventing capsular contracture via myofibroblast suppression, modulation of fibroblastic cytokines, and anti-inflammatory effect.

An immunohistochemical study on the effects of low-level laser irradiation on expression of actin filaments of human gingival fibroblasts in vitro (저출력레이저조사가 배양치은섬유아 세포의 actin filaments발현에 미치는 영향에 관한 면역조직화학적 연구)

  • Kim, Hyung-Sung;Kim, Chun-Suk;Kim, Hyung-Soo;Kim, Hyun-Seop;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.1003-1012
    • /
    • 1996
  • The induction of a phenotype with preoperties may have clinical significance in the acceleration of the wound-healing process. Wound contraction involves a specialized cell known as the myofibroblast. The myofibroblasts can be identified by their intense staining of actin bundles with anti-actin antibody. Tissue-specific actin distribution is correlated with the contractile activity of the myofibroblasts and smooth muscle etc. This study was performed to determine the expression of actin filaments in the cytoplasm of cultured human gingival fibroblsts after GaAs laser(BIOSAER, Korea) irradiation. Human gingival fibroblasts were cultured from explants of normal interdental gingival tissue. The third-generation fibroblasts were used for immunohistochemical study. The cultured fibroblasts were exposed $0.53joule/cm^2$(lmW, 7 mimutes) of energy density, and then observed by immunohistochemical method using, rabbit anti0gelsolin, hen smooth muscle polyclonal antibody(Chemicon international inc.), and biotinylated goat anti-rabbit IgG(Vectastain) 24-, 36-, 48-hour after laser irradiation Following results were obtained ; 1. In nonirradiated cultures, round shaped active fibroblasts with abundant cytoplasm and prominet nucleoli were observed. 2. In 24- and 36-hour cultures after laser irradiation, spindle shaped cells with long process were observed. The intensity of stain was seen in cytoplasm of these modified fibroblasts. 3. In 48-hoour cultures after laser irradiation, stained spindle shape cell were not observed. The results suggest that the effect of the galium-arsenide laser treatment on cultured gingival fibroblasts is the rapid development of cytoplasmic actin filaments.

  • PDF

Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix

  • You, Eunae;Jeong, Jangho;Lee, Jieun;Keum, Seula;Hwang, Ye Eun;Choi, Jee-Hye;Rhee, Sangmyung
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.192-197
    • /
    • 2022
  • Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, significantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.

Establishment of a Radiation-Induced Fibrosis Model in BALB/c Mice (BALB/c 마우스를 이용한 방사선섬유증 모델 확립)

  • Ryu, Seung-Hee;Lee, Sang-Wook;Moon, Soo-Young;Oh, Jeong-Yoon;Yang, Youn-Joo;Park, Jin-Hong
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • Purpose: Although radiation-induced fibrosis is one of the common sequelae occurring after irradiation of skin and soft tissues, the treatment methods are not well standardized. This study aimed to establish the skin fibrosis mouse model by fractionated radiation for the further mechanism studies or testing the efficacy of therapeutic candidates. Materials and Methods: The right hind limbs of BALB/c mice received two fractions of 20 Gy using a therapeutic linear accelerator. Early skin damages were scored and tissue fibrosis was assessed by the measurement of a leg extension. Morphological changes were assessed by H&E staining and by Masson's Trichrome staining. TGF-${\beta}1$ expression from soft tissues was also detected by immunohistochemistry and PCR. Results: Two fractions of 20 Gy irradiation were demonstrated as being enough to induce early skin damage effects such as erythema, mild skin dryness, dry and wet desquamation within several weeks of radiation. After 13 weeks of irradiation, the average radiation-induced leg contraction was $11.1{\pm}6.2mm$. Morphologic changes in irradiated skin biopsies exhibited disorganized collagen and extracellular matrix fibers, as well as the accumulation of myofibroblasts compared to the non-irradiated skin. Moreover, TGF-${\beta}1$ expression in tissue was increased by radiation. Conclusion: These results show that two fractions of 20 Gy irradiation can induce skin fibrosis in BALB/c mice accompanied by other common characteristics of skin damages. This animal model can be a useful tool for studying skin fibrosis induced by radiation.

Potential Roles of Hedgehog and Estrogen in Regulating the Progression of Fatty Liver Disease (지방간 진행 조절에 대한 헤지호그와 에스트로겐의 잠재적 역할)

  • Hyun, Jeong-Eun;Jung, Young-Mi
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1795-1803
    • /
    • 2011
  • Non-alcoholic fatty liver disease accompanies the rise in the prevalence of obesity, diabetes and the tendency toward high-fat dietary habits. Specifically, the higher prevalence of non-alcoholic fatty liver disease in men and postmenopausal women seems to be caused by the protective effects of estrogen against liver fibrosis, or lack thereof. There are no effective preventive therapies for liver diseases because the mechanisms underlying the progression of fatty liver diseases to chronic liver diseases and the protective effects of estrogen against fibrogenesis remain unclear. Recently, it has been reported that the hedgehog signaling pathway plays an important role in the progression of chronic liver diseases. Hedgehog, a morphogen regulating embryonic liver development, is expressed in injured livers but not in adult healthy livers. The level of hedgehog expression parallels the stages of liver diseases. Hedgehog induces myofibroblast activation and hepatic progenitor cell proliferation and leads to excessive liver fibrosis, whereas estrogen inhibits the activation of hepatic stellate cells to myofibroblasts and prevents liver fibrosis. Although the mechanism underlying the opposing actions of hedgehog and estrogen on liver fibrosis remain unclear, the suppressive effects of estrogen on the expression of osteopontin, a profibrogenic extracellular matrix protein and cytokine, and the inductive effects of hedgehog on osteopontin transcription suggest that estrogen and hedgehog are associated with liver fibrosis regulation. Therefore, further research on the estrogen-mediated regulatory mechanisms underlying the hedgehog-signaling pathway can identify the mechanism underlying liver fibrogenesis and contribute to developing therapies for preventing the progression of fibrosis to chronic liver diseases.