• 제목/요약/키워드: Mycorrhizas

검색결과 22건 처리시간 0.019초

Monotropoid Mycorrhizal Characteristics of Monotropa uniflora (Ericaceae) Collected from a Forest in Korea

  • Lee, Eun-Hwa;Eom, Ahn-Heum
    • 한국균학회지
    • /
    • 제42권3호
    • /
    • pp.243-246
    • /
    • 2014
  • The roots of Monotropa uniflora were collected from a forest in Korea. Morphological characteristics of monotropid mycorrhizas of the plants were determined. Thick mantles covered the roots and fungal pegs inside the epidermal cells of the roots were observed. Fungal symbionts were identified by sequence analysis of internal transcribed spacer region. Phylogenetic analysis based on the sequences demonstrated that the fungus was the most closely related to Russula heterophylla. The result support the strong specificity between M. uniflora and Russula species.

송이와 소나무간의 공생관계(共生關係)에서 외생균근(外生菌根)의 시(時)-공간적(空間的) 구조변화(構造變化) (Spatiotemporal change in ectomycorrhizal structure between Tricholoma matsutake and Pinus densiflora symbiosis)

  • 구창덕;김재수;박재인;가강현
    • 한국산림과학회지
    • /
    • 제89권3호
    • /
    • pp.389-396
    • /
    • 2000
  • 송이(Tricholoma matsutake, Songyi, pine mushroom)는 소나무(Pinus densiflora) 뿌리에 공생(共生)하는가, 아니면 기생(寄生)하는가를 알기 위하여 자연산 송이 균환(菌環) 내에서 균환선단, 송이발생지점, 균환 후단으로 구분하여 채집한 송이 균근(菌根)의 시간적-공간적 구조변화를 조사하였다. 송이는 소나무의 가장 가는 뿌리에 균투와 하티그 망을 형성하는 전형적인 외생균근(外生菌根)이다. 송이 균근(菌根)의 중요한 특징(特徵)은, 공간적으로는 소나무 뿌리의 정단부가 계속 생장함에 따라 송이 균근(菌根) 또한 왕성하게 정단부로 자라나간다. 그리고 시간적으로는 이미 형성된 균근(菌根)부분에서는 표피세포와 피층세포가 하티그 망과 함께 사멸하므로 뿌리표면이 흑갈색으로 주름이 진다. 그렇지만 송이균이 피층세포 내로 들어간 흔적은 없으며, 내피세포층 이상의 안쪽, 즉 뿌리의 통도조직으로 침입하여 들어간 흔적이 없이 정단분열조직은 살아있다. 이 정단부는 송이균이 사라지면서 들어오는 새로운 균과 균근을 형성한다. 그러므로 송이와 소나무의 관계는 단순한 공생(共生)이나 기생(寄生)이기 보다는 시간(時間)과 공간적(空間的)으로 공생(共生) 지점이 뿌리의 생장과 함께 옮겨가는 다이내믹한 외생균근(外生菌根) 공생(共生)관계라고 결론 짓는다.

  • PDF

Effects of Mycorrhizal and Endophytic Fungi on Plant Community: a Microcosm Study

  • Park, Sang-Hyun;Eom, Ahn-Heum
    • Mycobiology
    • /
    • 제35권4호
    • /
    • pp.186-190
    • /
    • 2007
  • This study was conducted to investigate the effects of foliar endophytic fungi and arbuscular mycorrhizal fungi (AMF) on plant community structure in experimental microcosms containing an assemblage of five species of plants (Oenothera odorata, Plantago asiatica, Trifolium repens, Isodon japonicas and Aster yomena). Leaves of Sasa borealis, Potentilia fragarioides, and Viola mandshurica were collected in Chungbuk, Korea. Endophytic fungi were isolated from the surface sterilized leaves and identified to species level using molecular and morphological techniques. Four isolates of the endophytic fungi were inoculated to the leaves of host plants in the microcosms. Also, three species of AMF spores were extracted from pure cultures and the mixture of the three species inoculated to the roots of the plants. After four months of growth in a green house, effects of both symbiotic fungi on plant species diversity, community composition and productivity were examined. The plant species diversity showed significant differences with inoculation of the symbiotic fungi. Results indicate that AMF significantly affect plant productivity and plant community structure.

Effects of Soils Containing Arbuscular Mycorrhizas on Plant Growth and Their Colonization

  • Eom, Ahn-Heum;Kim, Yee;Lee, Sang-Sun
    • Mycobiology
    • /
    • 제30권1호
    • /
    • pp.18-21
    • /
    • 2002
  • Four arbuscular mycorrhizal fungal(AMF) inocula collected from three arable sites in Korea were used to determine plant growth, mycorrhizal root colonization rate and spore production in three different host plant species; Sorghum bicolor, Allium fistulosum, Tagetes patula. Growth of plant treated with AMF differed from those without AMF. Different AMF inocula showed significantly different root colonization rates and spore production of AMF on the wild plants, A. fistulosum and T. patula, but did not on the cultivated plant, S. bicolor. Results suggested that indigenous mycorrhizal fungal community would be important factors in mycorrhizal symbiosis, and play important roles in the plant succession.

Effects of Organic Farming on Communities of Arbuscular Mycorrhizal Fungi

  • Lee, Si-Woo;Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • 제36권1호
    • /
    • pp.19-23
    • /
    • 2008
  • Red pepper (Capsicum annum L.) roots and soils representing different agricultural management practices such as conventional (CON), no-chemical (NOC), and organic farming systems (ORG) were collected from 32 farm field sites in Kyunggi, Korea to investigate the effects of these agricultural practices on arbuscular mycorrhizal (AM) symbiosis. ORG inoculum significantly increased plant growth compared to inoculum from CON and NOC. A community analysis of AM fungi (AMF) using morphological features of spores revealed that AMF spore abundance and species diversity were significantly higher in ORG than in CON. Additionally, a community analysis of AMF colonizing roots using a molecular technique revealed higher AMF diversity in ORG than in CON. These results suggest that agricultural practices significantly influence AM fungal community structure and mycorrhizal inoculum potential.

Effect of Organic Farming on Spore Diversity of Arbuscular Mycorrhizal Fungi and Glomalin in Soil

  • Lee, Ji-Eun;Eom, Ahn-Heum
    • Mycobiology
    • /
    • 제37권4호
    • /
    • pp.272-276
    • /
    • 2009
  • In this study, eight soil samples were collected from organic and conventional farms in a central area of South Korea. Spore communities of arbuscular mycorrhizal fungi (AMF) and glomalin, a glycoprotein produced by AMF, were analyzed. Spores of Glomus clarum, G. etunicatum, G. mosseae, G. sp., Acaulospora longula, A. spinosa, Gigaspora margarita, and Paraglomus occultum were identified at the study sites, based on morphological and molecular characteristics. While Acaulospora longula was the most dominant species in soils at organic farms, Paraglomus occultum was the most dominant species in soils at conventional farms. Species diversity and species number in AMF communities found in soils from organic farms were significantly higher than in soils from conventional farms. Glomalin was also extracted from soil samples collected at organic and conventional farms and was analyzed using both Bradford and enzyme-linked immunosorbent assays. The glomalin content in soils from organic farms was significantly higher than in soils from conventional farms. These results indicate that agricultural practices significantly affect AMF abundance and community structure.

Effects of Arbuscular Mycorrhizal Fungal Inoculation on the Growth of Red Pepper and Soil Glomalin Content

  • Lee, Ji-Eun;Lee, Eun-Hwa;Eom, Ahn-Heum
    • 한국균학회지
    • /
    • 제49권4호
    • /
    • pp.517-524
    • /
    • 2021
  • Red pepper seedlings were inoculated either alone or with a mixture of all five species of arbuscular mycorrhizal fungi (AMF). After 10 weeks of growth in the greenhouse, the seedlings were transplanted into fields and cultivated without chemical fertilizers and pesticides for 10 weeks. The results showed that plant growth was significantly increased under both greenhouse and field conditions, suggesting that AMF inoculation has a positive effect on the growth of Capsicum annuum and improves the physical properties of the soil by increasing the concentration of glomalin. The application of AMF can positively contribute to sustainable agriculture by reducing the use of chemical fertilizers while increasing crop growth.

산림(山林)의 토양환경(土壤環境) 조건(條件)에 따른 수지상(樹枝狀) 균근(菌根)(AM)균(菌) 집단(集團)의 종(種) 다양성(多樣性) (Species Diversity of Arbuscular Mycorrhizal Fungi Community Depending on Environmental Conditions of Forest Soils)

  • 구창덕
    • 한국환경복원기술학회지
    • /
    • 제3권1호
    • /
    • pp.70-79
    • /
    • 2000
  • Arbuscular mycorrhizal(AM) fungi have significant role for ecosystem structure and function. They are the major component of forest soil ecosystems and critically important for water and nutrient cycling in the system. To understand the ecology of AM fungi the fungal spores were collected, identified and counted in forest soils under various climatic and edaphic conditions. In relation to soil depth 90% of AM fungi spores and mycorrhizas distributed within 15cm soil depth. Number of spores per $100m{\ell}$ forest soil volume was 5 to 36 spores from 1 to 3 fungal species. AM fungal species diversity was higher in warmer climates, and more moist and fertile soils. The most frequently found species were Gigaspora decipiens irrespective of soil moisture and Gi. gigantea irrespective of soil fertility. In the Jeju island the soils of Cryptomeria japonica plantations and Miscanthus sinensis var. purpurascens meadow had more AM spores than the other soils. We suggest AM fungi be considered as keystones species when restoring a disturbed forest ecosystem.

  • PDF

수분 스트레스가 루브라오리나무 묘목의 균근발달과 생장에 미치는 영향 (Effect of Water Stress on Ectomycorrhizal Development and Growth of Alnus rubra Seedlings)

  • 구창덕
    • 한국토양비료학회지
    • /
    • 제34권4호
    • /
    • pp.302-309
    • /
    • 2001
  • 수분 스트레스가 루브라오리나무(Alnus rubra) 묘목의 균근(Alpova diplophloeus) 발달과 생장에 미치는 영향을 조사하였다. 5일 주기의 수분 스트레스를 10주 동안 처리한 결과 A. diplophloeus 균근의 형성, 묘목의 생리활동 및 생장이 감소하였다. A. diplophloeus 균근균이 접종된 묘목과 접종되지 않은 묘목은 수분 스트레스에 관계없이 생리활동이나 생장에서 차이가 없었다. 질소고정활동은 탄소동화작용보다 수분스트레스에 덜 민감하였다. 이 결과는 수분스트레스 상태에서 A. diplophloeus 균근은 오리나무의 적응도(fitness)에 기여하지 못함을 의미한다.

  • PDF

Molecular Identification of Arbuscular Mycorrhizal Fungal Spores Collected in Korea

  • Lee, Jai-Koo;Park, Sang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • 제34권1호
    • /
    • pp.7-13
    • /
    • 2006
  • Arbuscular mycorrhizas (AM) have mutualistic symbiosis with plants and thus efforts have been placed on application of these symbiotic relationships to agricultural and environmental fields. In this study, AM fungi were collected from 25 sites growing with 16 host plant species in Korea and cultured with Sorghum bicolor in greenhouse condition. AM fungal spores were extracted and identified using both morphological and molecular methods. Using morphological characters, total 15 morpho-speices were identified. DNA was extracted from single spore of AM fungi and a partial region on 18S rDNA was amplified using nested PCR with AM fungal specific primers AML1/AML2. A total of 36 18S rDNA sequences were analyzed for phylogenetic analysis and 15 groups of AM fungi were identified using both morphological and molecular data of spores. Among the species, 4 species, Archaeospora leptoticha, Scutellospora castanea, S. cerradensis, S. weresubiae were described for the first time in Korea and two species in Glomus and a species in Gigaspora were not identified. Morphological and molecular identification of AM fungal spores in this study would help identify AM fungal community colonizing roots.