• 제목/요약/키워드: MyD88

검색결과 70건 처리시간 0.023초

Beauvericin, a cyclic peptide, inhibits inflammatory responses in macrophages by inhibiting the NF-κB pathway

  • Yoo, Sulgi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권4호
    • /
    • pp.449-456
    • /
    • 2017
  • Beauvericin (BEA), a cyclic hexadepsipeptide produced by the fungus Beauveria bassiana, is known to have anti-cancer, anti-inflammatory, and anti-microbial actions. However, how BEA suppresses macrophage-induced inflammatory responses has not been fully elucidated. In this study, we explored the anti-inflammatory properties of BEA and the underlying molecular mechanisms using lipopolysaccharide (LPS)-treated macrophage-like RAW264.7 cells. Levels of nitric oxide (NO), mRNA levels of transcription factors and the inflammatory genes inducible NO synthase (iNOS) and interleukin (IL)-1, and protein levels of activated intracellular signaling molecules were determined by Griess assay, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), luciferase reporter gene assay, and immunoblotting analysis. BEA dose-dependently blocked the production of NO in LPS-treated RAW264.7 cells without inducing cell cytotoxicity. BEA also prevented LPS-triggered morphological changes. This compound significantly inhibited nuclear translocation of the $NF-{\kappa}B$ subunits p65 and p50. Luciferase reporter gene assays demonstrated that BEA suppresses MyD88-dependent NF-${\kappa}B$ activation. By analyzing upstream signaling events for $NF-{\kappa}B$ activation and overexpressing Src and Syk, these two enzymes were revealed to be targets of BEA. Together, these results suggest that BEA suppresses $NF-{\kappa}B$-dependent inflammatory responses by suppressing both Src and Syk.

청소년이 지각한 부모의 애정적 양육태도가 사회적 위축에 미치는 영향 : 자아탄력성의 매개효과 (The Effect of Affectionate Parenting Attitudes Perceived by Adolescents on Social Withdrawal : The Mediator Effect of Ego-resilience)

  • 김혜선;이지민
    • 가정과삶의질연구
    • /
    • 제34권4호
    • /
    • pp.77-88
    • /
    • 2016
  • This study was conducted in order to find out protective factors on adolescent's social withdrawal. The purpose of this study was to test the mediator effects of adolescent's ego-resilience in the relation between affectionate parenting attitudes and adolescent's social withdrawal. The data were collected from 586 students of high schools located in 'D' city, Korea. Adolescents completed questionnaires on 'My Memories of Upbringing(EMBU-short)', ego-resilience, and 'Korean Youth Self Report(K-YSR)' scales. The correlation and structural equation model were conducted to examine the relations between the variables by using the SPSS 21.0 and AMOS 21.0. The results are as follow: First, while the affectionate parenting attitudes did not directly affect the adolescent's social withdrawal, the ego-resilience had a direct effect on the adolescent's social withdrawal. Second, there was a significant mediator effect of the adolescent's ego-resilience between the affectionate parenting attitude and adolescent's social withdrawal. In conclusion, these results can be used as basic data to prevent social withdrawal of adolescents and increase their ego-resilience.

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • ;;;;;윤형선
    • 대한의생명과학회지
    • /
    • 제16권1호
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

Activation of Toll-like receptor 9 and production of epitope specific antibody by liposome-encapsulated CpG-DNA

  • Kim, Dong-Bum;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.607-612
    • /
    • 2011
  • Several investigators have shown that CpG-DNA has outstanding effects as a Th1-responsive adjuvant and that its potent adjuvant effects are enhanced by encapsulation with a liposome of proper composition. In this study, we showed that encapsulation with phosphatidyl-${\beta}$-oleoyl-${\gamma}$-palmitoyl ethanolamine (DOPE): cholesterol hemisuccinate (CHEMS) complex enhances the immunostimulatory activity of CpG DNA and the binding of CpG-DNA to TLR9. We also examined involvement of myeloid differentiation protein (MyD88) and NF-${\kappa}B$ activation in liposome-encapsulated CpG-DNA-induced IL-8 promoter activation. In this manuscript, the natural phosphodiester bond CpG-DNA encapsulated by DOPE : CHEMS complex is designated as Lipoplex(O). Importantly, we successfully screened B cell epitopes of envelope protein (E protein) of hepatitis C virus (HCV-E) and attachment glycoprotein G of human respiratory syncytial virus (HRSV-G) by immunization with complexes of several peptides and Lipoplex(O) without carriers. Therefore, Lipoplex(O) is potentially applicable as a universal adjuvant for peptide-based epitope screening and antibody production.

Oak Wood Vinegar Suppresses the Expression of Cyclooxygenase-2 Induced by TLR4 Agonist

  • Yun, Sae-Mi;Park, Se-Jeong;Lee, A-Neum;Ahn, Sang-Il;Youn, Hyung-Sun
    • 대한의생명과학회지
    • /
    • 제15권3호
    • /
    • pp.257-260
    • /
    • 2009
  • Toll-like receptors (TLRs) recognize molecular structures derived from microbes including bacteria, viruses, yeast, and fungi. TLRs have emerged as a major signaling component of the mammalian host defense. TLR4 is a member of the Toll family that senses lipopolysaccharide (LPS), a cell wall component of gram negative bacteria. LPS recognition by TLR4 requires an additional accessory molecule, MD-2. LPS induces the activation of NF-${\kappa}B$ and IRF3 through MyD88 or TRIF-dependent pathways. The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products including cytokines and cyclooxygenase-2 (COX-2). This study was carried out to investigate the anti-inflammatory effects of oak wood vinegar. Oak wood vinegar inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by LPS. These results provide new ideas to understand the mechanism of oak wood vinegar for its anti-bacterial and anti-inflammatory activities.

  • PDF

RAW264.7 대식세포에서 방사선에 의한 MCP-1 발현 기작 연구 (Study on the Mechanism of Radiation-induced MCP-1 Expression in RAW264.7 Macrophage Cells)

  • 진창현;박용대;최대성;정일윤
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.227-231
    • /
    • 2010
  • The purpose of this study was to investigate the expression mechanism of MCP-1 in gamma-irradiated RAW 264.7 macrophage cells. MCP-1 plays an important role in attracting monocyte to injured site at the early inflammation stage. However the production mechanism of MCP-1 by gamma-irradiation in RAW 264.7 macrophage cells was almost undiscovered. We found that MCP-1 was produced in RAW 264.7 macrophage cells by irradiation with 5 Gy. And these inceases were attenuated by specific inhibitors treatment, such as $NF-{\kappa}B$, JNK, ERK, JAK2, and Pyk2. These results indicate that radiation-induced MCP-1 production is mediated by MyD88- and TRIF-dependent pathways in RAW 264.7 macrophage cells. Furthermore, gamma-irradiation induced heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophage cells. However this induction level was reduced before MCP-1 and $IFN-{\beta}$ production.

NF-κB-dependent Regulation of Matrix Metalloproteinase-9 Gene Expression by Lipopolysaccharide in a Macrophage Cell Line RAW 264.7

  • Rhee, Jae-Won;Lee, Keun-Wook;Kim, Dong-Bum;Lee, Young-Hee;Jeon, Ok-Hee;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.88-94
    • /
    • 2007
  • Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in the turnover of extracellular matrix (ECM) and in the migration of normal and tumor cells in response to normal physiologic and numerous pathologic conditions. Here, we show that the transcription of the MMP-9 gene is induced by lipopolysaccharide (LPS) stimulation in cells of a macrophage lineage (RAW 264.7 cells). We provide evidence that the NF-$\kappa$B binding site of the MMP-9 gene contributes to its expression in the LPS-signaling pathway, since mutation of NF-$\kappa$B binding site of MMP-9 promoter leads to a dramatic reduction in MMP-9 promoter activation. In addition, the degradation of l$\kappa$B$\alpha$;, and the presences of myeloid differentiation protein (MyD88) and tumor necrosis factor receptor-associated kinase 6 (TRAF6) were found to be required for LPS-activated MMP-9 expression. Chromatin immunoprecipitation (ChIP) assays showed that functional interaction between NF-$\kappa$B and the MMP-9 promoter element is necessary for LPS-activated MMP-9 induction in RAW 264.7 cells. In conclusion, our observations demonstrate that NF-$\kappa$B contributes to LPS-induced MMP-9 gene expression in a mouse macrophage cell line.

Comparison of media for a human peripheral blood mononuclear cell-based in vitro vaccine evaluation system

  • Shuran Gong;Putri Fajar;Jacqueline De Vries-Idema;Anke Huckriede
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권4호
    • /
    • pp.328-336
    • /
    • 2023
  • Purpose: Human peripheral blood mononuclear cell (PBMC)-based in vitro systems can be of great value in the development and assessment of vaccines but require the right medium for optimal performance of the different cell types present. Here, we compare three commonly used media for their capacity to support innate and adaptive immune responses evoked in PBMCs by Toll-like receptor (TLR) ligands and whole inactivated virus (WIV) influenza vaccine. Materials and Methods: Human PBMCs were cultured for different periods of time in Roswell Park Memorial Institute (RPMI), Dulbecco's minimal essential medium (DMEM), or Iscove's modified DMEM (IMDM) supplemented with 10% fetal calf serum. The viability of the cells was monitored and their responses to TLR ligands and WIV were assessed. Results: With increasing days of incubation, the viability of PBMCs cultured in RPMI or IMDM was slightly higher than that of cells cultured in DMEM. Upon exposure of the PBMCs to TLR ligands and WIV, RPMI was superior to the other two media in terms of supporting the expression of genes related to innate immunity, such as the TLR adaptor protein gene MyD88 (myeloid differentiation factor 88), the interferon (IFN)-stimulated genes MxA (myxovirus resistance protein 1) and ISG56 (interferon-stimulated gene 56), and the leukocyte recruitment chemokine gene MCP1 (monocyte chemoattractant protein-1). RPMI also performed best with regard to the activation of antigen-presenting cells. As for adaptive immunity, when stimulated with WIV, PBMCs cultured in RPMI or IMDM contained higher numbers of IFNγ-producing T cells and secreted more immunoglobulin G than PBMCs cultured in DMEM. Conclusion: Taken together, among the different media assessed, RPMI was identified as the optimal medium for a human PBMC-based in vitro vaccine evaluation system.

혈관평활근세포에서 glycated albumin에 의한 interleukin-6 증가에 관여하는 인자에 대한 연구 (Glycated Serum Albumin Induces Interleukin-6 Expression in Vascular Smooth Muscle Cells)

  • 백승일;임병용;김관회
    • 생명과학회지
    • /
    • 제21권1호
    • /
    • pp.36-43
    • /
    • 2011
  • Glycate화된 단백질이 혈관질환의 발생에 관여하는지 알아보기 위하여 glycated albumin (GA)이 혈관평활근 세포에서 인터루킨-6 발현에 영향을 주는지 조사하고 또한 그 기전을 구명하였다. GA에 노출된 혈관평활근세포에서 인터루킨-6 transcript가 증가하고, 인터루킨-6 단백질의 분비가 증가하고, 또한 인터루킨-6 유전자의 promoter가 활성화되었다. GA에 의한 인터루킨-6 유전자의 promoter 활성화는 dominant negative 형태의 Toll-like receptor (TLR)-4와 myeloid differentiation factor 88 (Myd88)에 의하여 크게 감소되었지만, dominant negative 형태의 TLR-2와 TIR-domain-containing adapter-inducing interferon-$\beta$ (TRIF)의 영향을 받지 않았다. 그리고 Extrcellular signal-related kinase (ERK) 억제 물질들은 GA에 의한 인터루킨-6의 분비 및 인터루킨-6 유전자 promoter 활성화를 억제하였다. 그리고 인터루킨-6 유전자의 promoter의 NF-${\kappa}B$-binding sequence에 변이는 GA에 의한 인터루킨-6 유전자의 promoter 활성화 억제하였다. 이러한 결과는 혈관평활근세포에서 GA에 의한 인터루킨-6 유전자 활성화에 TLR-4와 ERK 및 NF-${\kappa}B$가 관여함을 의미한다.

Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells

  • Shen, Ting;Lee, Jae-Hwi;Park, Myung-Hwan;Lee, Yong-Gyu;Rho, Ho-Sik;Kwak, Yi-Seong;Rhee, Man-Hee;Park, Yung-Chul;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.200-208
    • /
    • 2011
  • Ginsenoside (G) $Rp_1$ is a ginseng saponin derivative with anti-cancer and anti-inflammatory activities. In this study, we examined the mechanism by which G-$Rp_1$ inhibits inflammatory responses of cells. We did this using a strategy in which DNA constructs containing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) promoters were transfected into HEK293 cells. G-$Rp_1$ strongly inhibited the promoter activities of COX-2 and iNOS; it also inhibited lipopolysaccharide induced upregulation of COX-2 and iNOS mRNA levels in RAW264.7 cells. In HEK293 cells G-$Rp_1$ did not suppress TANK binding kinase 1-, Toll-interleukin-1 receptor-domain-containing adapter-inducing interferon-${\beta}$ (TRIF)-, TRIF-related adaptor molecule (TRAM)-, or activation of interferon regulatory factor (IRF)-3 and nuclear factor (NF)-${\kappa}$B by the myeloid differentiation primary response gene (MyD88)-induced. However, G-$Rp_1$ strongly suppressed NF-${\kappa}$B activation induced by I${\kappa}$B kinase (IKK)${\beta}$ in HEK293 cells. Consistent with these results, G-$Rp_1$ substantially inhibited IKK${\beta}$-induced phosphorylation of $I{\kappa}B{\alpha}$ and p65. These results suggest that G-$Rp_1$ is a novel anti-inflammatory ginsenoside analog that can be used to treat IKK${\beta}$/NF-${\kappa}$B-mediated inflammatory diseases.