• Title/Summary/Keyword: Mutual Inductance

Search Result 137, Processing Time 0.025 seconds

Electromagnetic Field Analysis for Basic Estimation of Power Induction Voltage (전력선 유도전압 기초 산출을 위한 전자계 해석)

  • Lee, Sang-Mu;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.5
    • /
    • pp.60-68
    • /
    • 2010
  • The calculation method of induction voltage is abbreviately by the Ohm's law including Carson-Pollaczek's equation for mutual inductance estimation and various shielding effect coefficients. This method is mainly scoped to 60㎐. power source and the inducing/induced object positioned on the air, and the dimension of shielding material is not thoroughly reflected. In this paper, more general method of calculation is scrutinized through electromagnetic wave propagation principles. Electromagnetic force as a voltage in the spot generating from the source is evaluated according to the position of the source and object, especially their relationship with earth surface as boundary line and independent to source propagation frequency. And this method intends to consider the material specification of each object in the induction field.

A Study on Energy Recovery Circuit in Sputtering Plasma Power supply for arc Discharge Prevention (스퍼터용 플라즈마 전원장치의 아크방지를 위한 에너지 회생회로에 대한 연구)

  • Ban, Jung-Hyun;Han, Hee-Min;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.116-121
    • /
    • 2012
  • Recently, in the field of renewable energy such as solar cells including the semiconductor and display industries, thin film deposition process is being diversified. Furthermore, to deal with trend of making high-quality and fast, the high-capacity and output plasma power supply which can control high density plasma is required. The biggest problem is arc discharge caused by using high voltage power supply. Thus, the key function of plasma power supply is to prevent arc discharge and there is a need to maintain the possible minimum arc energy. In DC sputtering power supply, on a periodic basis (-)voltage powering up is able to significantly reduce arcing, as well as arc discharge prevention, and maintaining uniform charge density. This conventional method for powering up (-)voltage requires heavy mutual inductance of the transformer to avoid distortion problem of the output voltage. This study is about energy recovery circuit for arc discharge prevention in sputtering plasma power supply. By using energy recovery circuit, it is possible to reduce the mutual inductance and size of the transformer dramatically, prevent distortion of the output voltage and has a stable output waveform. This work was proved through simulation and experimental study.

Electrical Characterization of BGA interconnection for RF packaging (Radio Frequency 회로 모듈 BGA 패키지)

  • Kim, Dong-Young;Woo, Sang-Hyun;Choi, Soon-Shin;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.96-99
    • /
    • 2000
  • We presents a BGA(Ball Grid Array) package for RF circuit modules and extracted its electrical parameters. We constructed a BGA package of ITS(Intelligent Transportation System) RF module and examined electrical parameters with a HP5475A TDR(Time Domain Reflectometry) equipment and compared its electrical parasitic parameters with PCB RF circuits. With a BGA substrate of 3 $\times$ 3 input and output terminals, we have found that self capacitance of BGA solder ball is 68.6fF, self inductance 146pH, mutual capacitance 10.9fF and mutual inductance 16.9pH. S parameter measurement with a HP4396B Network Analyzer showed the resonance frequency of 1.55㎓ and the loss of 0.26dB. Thus, we may improve electrical performance when we use BGA package structures in the design of RF circuit modules.

  • PDF

A Study on the Drive Characteristics of SRM by 2-Phase Excitation Method (2상 여자방식에 의한 SRM의 운전특성에 관한 연구)

  • 문재원;오석규;안진우;이일천;황영문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.412-417
    • /
    • 1998
  • This paper suggests the drive characteristics of a Switched Reluctance Motor(SRM) by 2-phase excitation method. T This scheme excites 2 phases simultaneously, which is similar to 2-phase excitation method of a step motor. In this s scheme. the torque is produced by mutual inductances as well as self inductances. The abrupt change of a phase e excitation produces mechanical stresses and it results in vibration and noise. The acoustic noise is reduced remarkably t through the sequential phase excitation in the 2-phase excitation. Operational principle and characteristic comp없1son t to that of the conventional SRM show that this excitation scheme has some advantages including torque ripple and n noise reduction.

  • PDF

A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed (저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법)

  • 박철우;권우현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

Spherical Flux Concentration Transmitter for Omnidirectional Wireless Power Transfer with Improved Power Transmission Distance (전력전송거리 증가를 위한 구형 자속 집중 송신부 구조의 설계 및 해석)

  • Park, Kwang-Rock;Cha, Hwa-Rang;Kim, Rae-Young;Kim, Tae-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • In this study, we propose a spherical flux concentration structure for omnidirectional wireless power transfer. Omnidirectional wireless power transfer technology is a method that can transmit power to a transmitter located in an arbitrary position in a two-dimensional or three-dimensional space. However, to improve the power transfer distance in a wireless power transfer system, the diameter of the coil or the number of windings must increase, thereby increasing the size of the transmitter. The proposed transmitter structure adds a ferrite core inside the transmitter coil so that the magnetic flux generated by the transmitter is directed toward the position of the receiver. As a result, the flux linkage and the mutual inductance increase. By implementing the omnidirectional wireless power transfer system using the proposed structure, the power transfer distance can be improved by 65% compared with the conventional system without increasing the size of the transmitter. Simulation shows that the proposed spherical flux concentration structure increases the mutual inductance of the omnidirectional wireless power transmission system.

Magnetic Field Simulation and Analysis for Monitoring Safety Hook Fastening (안전고리 체결 감지를 위한 자기장 시뮬레이션 및 분석)

  • Lee, Hoo-Sung;Heo, Jun;Park, Yong-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1169-1174
    • /
    • 2020
  • In this paper, in order to prevent a fall accident that occurs while working without fastening the safety hook at a construction site, a method to detect whether the safety hook is fastened using two coils is proposed. Ansys' Maxwell, an electromagnetic wave analysis simulator, was used to analyze the magnetic field before and after the safety hook fastening, and the possibility of confirming the fastening of the safety hook using the difference in the mutual inductance change and the resulting current induced in the receiving coil was shown.

SIP based Tunable BPF for UHF TV Tuner Applications (UHF대역 TV 튜너에 적용을 위한 가변형 대역통과필터)

  • Lee, Tae-C.;Park, Jae-Y.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2127-2130
    • /
    • 2008
  • In this paper, a tunable bandpass filter with mutual inductive coupling circuits is newly designed and demonstrated for UHF TV tuner ranged from Ch.14(473MHz) to Ch.69(803MHz) applications. Conventional HF tuning circuit with an electromagnetic bandpass filter has several problems such as large size, high volume and high cost, since the electromagnetic filter is comprised of several passive components and air core inductors to be assembled and controlled manually. To address these obstacles, peaking chip inductor was newly applied for constructing the mutual inductive coupling circuit. The proposed circuit was newly and optimally designed, since the chip inductor showed lower components Q-value than the air core inductor. A varactor diode has been also used to fabricate the proposed tunable bandpass filter for RF tuning circuit. The fabricated tunable filter exhibited low insertion loss of approximately -3dB, high return loss of below -10dB, and large tuning bandwidth of 330MHz.

A DSP Based Active Power Filter with Instantaneous Correlation Power Theory (상관함수에 의한 순시전력이론을 이용한 DSP 능동전력필터)

  • 정영국;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.50-56
    • /
    • 1999
  • This paper presents consideration on validity of instantaneous correlation power theory. The proposed power theory is defined and analyzed by time domain approach, thus it is easy to understand and instrument. The power is decomposed into active, fundamental reactive and harmonics components based on the autocorrelation and crosscorrelation signal techniques between voltage and current waveforms. On the compensation property, active power filter deal with three components only. Also, for real time control of active power filter, the power models with difficult concept are not cost effective. To verify the validity of the instantaneous correlation power theory, experimental work for voltage type DSP based active power filter is achieved. The power of thyristor controlled motor drives is decomposed into three orthogonal components by proposed power theory. From compensation results, validity of proposed theory is confirmed. feedback controller needs the information on some motor parameters. New recursive adaptation algorithms for rotor resistance and mutual inductance which can be applied to our nonlinear feedback controller are also presented in this paper. The recursive adaptation algorithms make the estimated values of rotor resistance and mutual inductance track their real values. Some simulation and experimental results show that the adaptation algorithms are robust against the variation of stator resistance and stator inductance.

Impedence Analysis of Planar Air Core Inductor (공심 평면인덕터의 임피던스 해석)

  • 김영학;송재성
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.179-188
    • /
    • 1996
  • This paper discussed on the impedance analysis of the planar air core inductors having spiral pattern and meander pattern. The width and distance of conductor, and number of turns were varied. As the width of conductor increased, both resistance and inductance decreased and there existed an maximum value in Q for spiral pattern. But Q increased with increasing width of conductor in meander pattern. In spiral pattern, there existed a distance between conductors where inductance became constant and Q became maximum, while the distance between conductors must be as large as possible to obtain large Q because the mutual inductance of meander pattern inductor has negative sign due to opposite current direction at adjacent conductor. Resistance and inductance increased with increasing the number of turns. There existed maximum Q at certain number of turns in spiral pattern. But Q became small in the meander pattern because increase of resistance was larger than increase of inductance with increasing number of turns.

  • PDF