• Title/Summary/Keyword: Mutual Channel

Search Result 123, Processing Time 0.029 seconds

The Mutual Information for Bit-Linear Linear-Dispersion Codes (BLLD 부호의 Mutual Information)

  • Jin, Xiang-Lan;Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.958-964
    • /
    • 2007
  • In this paper, we derive the relationship between the bit error probability (BEP) of maximum a posteriori (MAP) bit detection and the bit minimum mean square error (MMSE), that is, the BEP is greater than a quarter of the bit USE and less than a half of the bit MMSE. By using this result, the lower and upper bounds of the derivative of the mutual information are derived from the BEP and the lower and upper bounds are easily obtained in the multiple-input multiple-output (MIMO) communication systems with the bit-linear linear-dispersion (BLLD) codes in the Gaussian channel.

Link Scheduling and Channel Assignment in Multi-channel Cognitive Radio Networks: Spectrum Underlay Approach

  • Nguyen, Mui Van;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.300-302
    • /
    • 2012
  • In this paper, we investigate the performance of multi-channel cognitive radio networks (CRNs) by taking into consideration the problem of channel assignment and link scheduling. We assume that secondary nodes are equipped with multiple radios and can switch among multiple channels. How to allocate channels to links and how much power used on each channel to avoid mutual interference among secondary links are the key problem for such CRNs. We formulate the problem of channel assignment and link scheduling as a combinatorial optimization problem. Then, we propose a the optimal solution and show that it converges to maximum optimum in some iterations by using numerical results.

Compressed Sensing Techniques for Millimeter Wave Channel Estimation (밀리미터파 채널 추정을 위한 압축 센싱 기법)

  • Han, Yonghee;Lee, Jungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Millimeter wave (mmWave) bands are expected to improve date rate of 5G systems due to the wide available bandwidth. While severe path loss in those bands has impeded the utilization, short wavelength enables a large number of antennas packed in a compact form, which can mitigate the path loss. However, estimating the channel with a conventional scheme requires a huge training overhead, hence an efficient estimation scheme operating with a small overhead needs to be developed. The sparsity of mmWave channels caused by the limited scatterers can be exploited to reduce the overhead by utilizing compressed sensing. In this paper, we introduce compressed sensing techniques for mmWave channel estimation. First, we formulate wideband channel estimation into a sparse recovery problem. We also analyze the characteristics of random measurement matrix constructed using quantized phase shifters in terms of mutual incoherence.

A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems

  • Su, Yu-Gang;Zhou, Wei;Hu, Aiguo Patrick;Tang, Chun-Sen;Hua, Rong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.805-814
    • /
    • 2016
  • Electric-field coupled power transfer (ECPT) systems have been proposed as an alternative wireless power transfer (WPT) technology in recent years. With the use of capacitive plates as a coupling structure, ECPT systems have many advantages such as design flexibility, reduced volume of the coupling structure and metal penetration ability. In addition, wireless communications are effective solutions to improve the safety and controllability of ECPT systems. This paper proposes a power and signal shared channel for electric-field coupled power transfer systems. The shared channel includes two similar electrical circuits with a band pass filter and a signal detection resistor in each. This is designed based on the traditional current-fed push-pull topology. An analysis of the mutual interference between the power and signal transmission, the channel power and signal attenuations, and the dynamic characteristic of the signal channel are conducted to determine the values for the electrical components of the proposed shared channel. Experimental results show that the designed channel can transfer over 100W of output power and data with a data rate from 300bps to 120 kbps.

A Grouping Technique for Synchronous Digital Duplexing Systems (동기식 디지털 이중화 시스템을 위한 그룹핑 기법)

  • Ko, Yo-Han;Park, Chang-Hwan;Park, Kyung-Won;Jeon, Won-Gi;Paik, Jong-Ho;Lee, Seok-Pil;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.341-348
    • /
    • 2009
  • In this paper, we propose a grouping technique for the SDD(Synchronous Digital Duplexing) based on OFDMA(Orthogonal Frequency Division Multiple Access). The SDD has advantages of increasing data efficiency and flexibility of resource since SDD can transmit uplink signals and downlink signals simultaneously by using mutual time information and mutual channel information, obtained during mutual ranging process. However, the SDD has a disadvantage of requiring additional CS to maintain orthogonality of OFDMA symbols when the sum of mutual time difference and mutual channel length between AP(access point) and SS(subscriber station) or among SSs are larger than CP length. In order to minimize the length of CS for the case of requiring additional CS in SDD, we proposes a grouping technique which controls transmit timing and receive timing of AP and SS in a cell by classifying them into groups. Performances of the proposed grouping technique are evaluated by computer simulation.

One-Channel Phased-Array Quadrature RF Coil for Spine Magnetic Resonance Imaging (척추 MRI를 위한 One-Channel Phased-Array Quadrature RF 코일)

  • 양윤정;김선경
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.129-132
    • /
    • 1998
  • A new one-channel phased-array quadrature RF coil is developed for spine MR imaging. Quadrature RF coils for MRI have been used to improve the signal-to-noise ratio (SNR) by$"\squt{2}"$ using two orthogonal RF coils in combination. More recently, the phased-array RF coil has been proposed for more improvement of SNR by using an array of reduced-size RF coil elements. Two schemes proposed for the new phased-array quadrature RF coil are:(1) Proper overlapping of two quadrature RF coils thus removing the mutual inductance and (2) Attaching preamplifiers right after the coil section and combining the signal with proper phase delays. The coil has been implemented for receive-only mode, and tested by phantom and volunteer imaging. The experimental results show the utility of the proposed RF coil.d RF coil.

  • PDF

Interference Aware Channel Assignment Algorithm for D2D Multicast Underlying Cellular Networks

  • Zhao, Liqun;Ren, Lingmei;Li, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2648-2665
    • /
    • 2022
  • Device-to-device (D2D) multicast has become a promising technology to provide specific services within a small geographical region with a high data rate, low delay and low energy consumption. However, D2D multicast communications are allowed to reuse the same channels with cellular uplinks and result in mutual interference in a cell. In this paper, an intelligent channel assignment algorithm is designed in D2D underlaid cellular networks with the target of maximizing network throughput. We first model the channel assignment problem to be a throughput maximizing problem which is NP-hard. To solve the problem in a feasible way, a novel channel assignment algorithm is proposed. The key idea is to find the appropriate cellular communications and D2D multicast groups to share a channel without causing critical interference, i.e., finding a channel for a D2D multicast group which generates the least interference to network based on current channel assignment status. In order to show the efficacy and effectiveness of our proposed algorithm, a novel search algorithm is proposed to find the near-optimal solution as the baseline for comparisons. Simulation results show that the proposed algorithm improves the network throughput.

Detention System Design Model with consideration of the rainfall distribution and mutual connection (강우 분포 및 상호 관련성을 고려한 유수체계 설계 모형)

  • Lee, Beom-Hui
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • To solve the urban flood problems, it must get the enough channel conveyances and pumping capacities. It needs set up the detention system to control the flow over the channel capacity. Inspite of this detention system, the peak flow may increased by rainfall distribution and the delay of flow. This shows a design model of detention system which can consider the time problems from mutual connections of the detention storages and pumping flow using IDP(Incremental Dynamic Programming) method.

  • PDF