• Title/Summary/Keyword: Mutant ACO

Search Result 4, Processing Time 0.016 seconds

Muti-Order Processing System for Smart Warehouse Using Mutant Ant Colony Optimization (돌연변이 개미 군집화 알고리즘을 이용한 스마트 물류 창고의 다중 주문 처리 시스템)

  • Chang Hyun Kim;Yeojin Kim;Geuntae Kim;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.36-40
    • /
    • 2023
  • Recently, in the problem of multi-order processing in logistics warehouses, multi-pickup systems are changing from the form in which workers walk around the warehouse to the form in which goods come to workers. These changes are shortening the time to process multiple orders and increasing production. This study considered the sequence problem of which warehouse the items to be loaded on each truck come first and which items to be loaded first when loading multiple pallet-unit goods on multiple trucks in an industrial smart logistics automation warehouse. To solve this problem efficiently, we use the mutant algorithm, which combines the GA algorithm and ACO algorithm, and compare with original system.

  • PDF

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho;Roh, Jeehee;Youn, Ji-Hyun;Son, Seung-Hyun;Park, Ji Hye;Kim, Soon Young;Kim, Tae-Wuk;Kim, Seong-Ki
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.923-932
    • /
    • 2018
  • Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.

Regulation of Ethylene Biosynthesis in Phytochrome Mutants of the Arabidopsis Root (Arabidopsis 피토크롬 돌연변이체에서 ethylene 생합성 조절 작용)

  • Park, Ji-Hye;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.559-564
    • /
    • 2012
  • In order to investigate the effect of phytochromes on the regulation of ethylene biosynthesis, we measured the ethylene production and the activities of enzymes involved in ethylene biosynthesis using phytochrome mutants such as $phyA$, $phyB$, and $phyAB$ of Arabidopsis. The ethylene production was decreased in mutants grown in white light. In particular, double mutants showed a 37% decrease compared to the wild type in ethylene production. When Arabidopsis roots were grown in the dark, mutants did not show a decrease in ethylene production; however, production was significantly decreased in the double mutant grown in red light. Only $phyB$ did not show the decrease in the ethylene production in far-red light. Unlike the ACO activities, the ACS activities of mutants showed the same pattern as the ethylene production under several light conditions. The results of ACS activities confirmed the expression of the ACS gene by RT-PCR analysis. The decrease of ethylene production in mutants was due to the lower activity of ACC synthase, which converts the S-adenosyl-L-methionine (AdoMet) to 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene. These results suggested that both phytochrome A and B play an important role in the regulation of ethylene biosynthesis in Arabidopsis roots in the conversion step of AdoMet to ACC, which is regulated by ACS.

Phytochromes are Involved in the Regulation of Growth and the Gravitropic Response via Ethylene Production in Hypocotyl of Arabidopsis (애기장대의 하배축에서 피토크롬이 생장과 굴중성 반응에 미치는 영향)

  • Lee, Sang Seung;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Light is essential to the growth and development of plants, and it is perceived by phytochromes, which are one of the photoreceptors that regulate physiological responses in plants. Ethylene regulates the dormancy, senescence, growth, and development of organs in plants. This research focused on the interaction of phytochromes and ethylene to control hypocotyl growth and gravitropism using phytochrome mutants of Arabidopsis, phyA, phyB, and phyAB, under three light conditions: red (R) light, farred (FR) light, and white light. The mutant phyAB exhibited the most stimulation of gravitropic response of all three phytochrome mutants and wild type (WT) in all three light conditions. Moreover, phyB in the R light condition showed more negative gravitropism than phyA. However, phyB in the FR light condition showed less curvature than phyA. The hypocotyl growth pattern was similar to the gravitropic response in several light conditions. To explain the mechanism of the regulation of gravitropic response and growth, we measured the ethylene production and activities of in vitro ACS and ACO. Ethylene production was reduced in all the mutants grown in white light in comparison to the WT. Ethylene production increased in the phyA grown in R light and phyB grown in FR light in comparison to the other mutants. The ACS activity coincided with the ethylene production in the phyA and the phyB grown in R light and FR light, respectively. These results suggest that the Pfr form of phyB in R light and the Pr form of phyA in FR light increased ethylene production via increasing ACS activity.