• Title/Summary/Keyword: Mutant

Search Result 2,853, Processing Time 0.033 seconds

The vacuolar processing enzyme (VPE) mutation suppresses an HR-like cell death induced by the double knockout mutant of vacuolar Ca2+-ATPases in Arabidopsis (애기장대에서 두 액포막 칼슘펌프 돌연변이에 의하여 유도되는 세포사멸 표현형의 액포수식효소(VPE) 돌연변이에 의한 억제)

  • Park, Hyeong-Cheol;Lee, Sang-Min;Kim, Ho-Soo;Chung, Woo-Sik
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • Calcium ($Ca^{2+}$) signals have been implicated in regulating plant development and responses to the environmental stresses including a programmed cell death pathway. In animals and plants, cytosolic $Ca^{2+}$ signals have been involved in the activation of programmed cell death (PCD). Recently, we reported that disruption of Arabidopsis vacuolar $\b{A}$utoinhibited $\underline{C}a^{2+}$-$\b{A}$TPases (ACAs), ACA4 and ACA11, resulted in the activation of a salicylic acid-dependent programmed cell death pathway. Although extensive studies have revealed various components of a PCD in plants, executors to directly induce PCD are well unknown. Here, we provide that the vacuolar processing enzymes (VPEs) are involved in a PCD induced by the double knockout mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis. The gene expression of VPE was rapidly up-regulated and the enzyme activity of VPE was increased in the double mutant plants. We also generated aca4/aca11/avpe, aca4/aca11/${\gamma}$vpe and aca4/aca11/avpe/${\gamma}$vpe mutant plants. Although cell death phenotype of the double mutant plants was not completely disappeared in the triple and quadruple mutant plants, the triple and quadruple mutant plants showed to significantly delay cell death phenotype of the double mutant plants. These results suggest that the VPE is involved in the HR-like cell death in the double mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis.

Characterization of Physiological Properties in Vibrio fluvialis by the Deletion of Oligopeptide Permease (oppA) Gene (Vibrio fluvialis oligopeptide permease (oppA) 유전자 deletion에 의한 생리적 특성)

  • Ahn Sun Hee;Lee Eun Mi;Kim Dong Gyun;Hong Gyoung Eun;Park Eun Mi;Kong In Soo
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.131-135
    • /
    • 2006
  • Oligopeptide is known to be an essential nitrogen nutrient for bacterial growth. Oligopeptide can be transported into cytoplasm by a specific transport system, Opp system. Opp system is composed of five proteins, which are transcribed by an operon. These are responsible for oligopeptide binding protein (OppA), permease (OppB and OppC) and energy generation system (OppD and OppF), respectively. Previously, we isolated the opp operon from Vibrio fluvialis and constructed the oppA mutant by allelic exchange method. In this study, we investigated the growth pattern and biofilm production under the different growth condition. When the cells were cultivated using brain heart infusion(BHI) medium, the wild type was faster than the mutant in growth during the exponential phase. However, it showed that the growth pattern of two strains in M9 medium is very similar. The growth of wild type showed better than that of the mutant grown at pH 8. At pH 7, there was no an obvious difference in growth. After 5 mM $H_2O_2$ was treated to the cells $(OD_{600}=1.2)$, the cell survival was examined. The oppA mutation did not affect in survivability. In the presence of $10{\mu}g/ml$ polymyxin B, the biofilm production of the oppA mutant was higher than that of the wild type.

Regulation of Ethylene Biosynthesis in Phytochrome Mutants of the Arabidopsis Root (Arabidopsis 피토크롬 돌연변이체에서 ethylene 생합성 조절 작용)

  • Park, Ji-Hye;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.559-564
    • /
    • 2012
  • In order to investigate the effect of phytochromes on the regulation of ethylene biosynthesis, we measured the ethylene production and the activities of enzymes involved in ethylene biosynthesis using phytochrome mutants such as $phyA$, $phyB$, and $phyAB$ of Arabidopsis. The ethylene production was decreased in mutants grown in white light. In particular, double mutants showed a 37% decrease compared to the wild type in ethylene production. When Arabidopsis roots were grown in the dark, mutants did not show a decrease in ethylene production; however, production was significantly decreased in the double mutant grown in red light. Only $phyB$ did not show the decrease in the ethylene production in far-red light. Unlike the ACO activities, the ACS activities of mutants showed the same pattern as the ethylene production under several light conditions. The results of ACS activities confirmed the expression of the ACS gene by RT-PCR analysis. The decrease of ethylene production in mutants was due to the lower activity of ACC synthase, which converts the S-adenosyl-L-methionine (AdoMet) to 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene. These results suggested that both phytochrome A and B play an important role in the regulation of ethylene biosynthesis in Arabidopsis roots in the conversion step of AdoMet to ACC, which is regulated by ACS.

Induction of apoptosis by etoposide treatment in colon cancer cell line SNU C2A (대장암 세포주 SNU C2A에서 etoposide 처리에 의한 apoptosis 유도)

  • Jung, Ji-Yeon;Na, Yun-sook;Jung, Ho-Chul;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.221-229
    • /
    • 2001
  • Background: Inactivation of tumor suppressor genes is believed to be important in the development of many human malignancies. Recently, several lines of evidence have indicated that the wild type p53 gene located at 17p13.3, may function as a tumor suppressor gene and that a mutant p53 gene could promote transformation by inactivating normal p53 function in a dominant negative fashion. These broad spectrum of p53 mutation in human cancers provide that mutant p53 and their protein may be potential targets of tumor diagnostic and therapeutic interventions. Method: Colony formation was performed to investigate growth suppressional ability. p53 expression pattern was examined by western blot and p53-mediated transactivation ability was assessed by CAT activity. SNU C2A cells were observed in apoptotic aspects induced by etoposide and $H_2O_2$ treatment, detecting sensitivity on agent, DNA fragmentation through agarose gel, chromatin condensation by fluorescence microscope, and cell cycle distribution by FACS. Result: 1) p53 mutant his179arg ($histidine{\rightarrow}arginine$) detected in SNU C2A cells lost transcriptional activity and growth suppression ability, showing dominant negative effect on its wild type p53. 2) Etoposide-treated SNU C2A cells induced apoptosis, exhibiting dramatic reduction of cell growth, DNA fragmentation, nuclear condensation formation of apoptotic body and increment of sub-G1 cell fraction. 3) Etoposide and $H_2O_2$-treated SNU C2A cells have no high increase of p53 expression and overexpressed p53 protein changed localization, from cytoplasm to nucleus. Also, p53-mediated transcriptional activity was increased by agents-treatment. Conclusion: SNU C2A cells coexpress wild-type and mutant p53 protein induced apoptosis in the condition on DNA damage, through localizational shift from cytoplasm to nucleus of p53 protein rather than the induction of p53 protein. SNU C2A cells derived mutant p53 his179arg abrogated both the growth supression ability and transactivational activity, showing inhibition effect on transcriptional activity of wild type p53, but did not repress the activity of wild type p53 in SNU C2A cells owing to dominant activity of wild type. These cell condition may provide new gene therapeutic implications leading effective antiproliferation of cell when mutant and wild-type p53 protein were co-expressed in cell.

  • PDF

Selection of a Mutant Strain with High Yield of Cellulose Production Derived from $Acetobacter$ sp. A9 ($Acetobacter$ sp. A9에서 셀룰로오스 생산량이 높은 변이주 선별)

  • Lee, O-Mi;Son, Hong-Joo;Lee, Sang-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.321-325
    • /
    • 2011
  • The mutant strain M6 derived from Acetobacter sp. A9, which produces high levels of the bacterial cellulose derived by random mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine or UV treatment, was selected by a Hestrin and Schramm medium (HSB) plate assay. The characterization of the cellulose production was studied in flask culture to improve the productivity of bacterial cellulose by $Acetobacter$ sp. A9 and mutant strain M6. The yield of cellulose production was superior to mutant M6 than $Acetobacter$ sp. A9. Cellulose was produced 0.12 g $L^{-1}$ by $Acetobacter$ sp. A9 at HS medium and the mutant M6 produced the cellulose 6.95 g $L^{-1}$at HS medium. Strain M6 produced less amount of gluconic acid than A9, thus showing that cellulose production is negatively relted with the gluconic acid production.

Effect of Sigma Factor ${\sigma}^{B}$ on Biofilm Formation of Listeria monocytogenes in High Osmotic and Low Temperature Conditions (고삼투압 및 저온 조건에서 sigma factor ${\sigma}^{B}$가 Listeria monocytogenes biofilm 생성에 미치는 영향)

  • Park, Sang-Gyu;Park, Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.456-460
    • /
    • 2004
  • Effects of sigma factor (${\sigma}^{B}$) on biofilm formation in Listeria monocytogenes 10403S and ${\sigma}^{B}-deficient$ sigB null mutant were studied under high osmotic and low temperature conditions. In brain heart infusion (BHI) medium containing 6% NaCl, wild type 10403S and ${\sigma}^{B}-deficient$sigB null mutant formed biofilms of $6.83{\pm}0.38\;and\;5.33{\pm}0.45\;log\;cfu/cm^{2}$, respectively. L. monocytogenes 10403S in BHI medium containing 6% NaCl formed 4.7 times larger biofilm than without NaCl. Culture of L. monocytogenes 10403S and sigB null mutant at $4^{\circ}C$ did not show any significant differences in biofilm formation. The results suggest biofilm formation is activated by ${\sigma}^{B}$ and NaCl, whereas not affected by low temperature stress in L. monocytogenes 10403S. More studies are necessary to determine biofilm formation mechanism in osmotolerant L. monocytogenes.

Studies on the High Protein Mutants of Rice (수도 고단백 돌연변이계통에 관한 연구)

  • Chang-Yawl Harn;J. L. Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.20
    • /
    • pp.63-68
    • /
    • 1975
  • Several high protein mutant lines(M4 plant generation, 1974) obtained from X-ray irradiated Jinheung variety were examined at three different locations for their agronomic characters, protein and grain yields. On the other hand, high protein-short culmed-early maturity mutant line No. 398 (M$_{10}$ plant generation, 1974) induced from Hokwang was crossed back to its mother to investigate the gene(s) controlling protein and its pleiotropic relation to other mutated characters. Although variation of protein percent of mutant lines from Jinheung was comparatively large depending on year and location, most of the high protein mutant lines had higher protein yield per unit area than the mother variety and their grain yields were equal to or better than the mother, being resistant to both leaf and neck blast. They were several days earlier-maturing and had shorter-culm except one mutant line. The culm length and heading date of F$_1$ between high protein mutant 398 and its mother Hokwang were intermediate. Accurate assessment of segregation of culm length and heading date in F$_2$ generation and protein percent in F$_3$ seeds will be conducted in 1975.

  • PDF

Biological Functions of the COOH-Terminal Amino Acids of the $\alpha$-Subunit of Tethered Equine Chorionic Gonadotropin

  • Jeoung, Youn-Hee;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • Glycoprotein hormones have a common $\alpha$-subunit that is involved in the signaling pathway together with G protein, adenylcyclase and cAMP induction; however, it is an unclear how this common structure is related to hormonal action. To determine the biological functions of the COOH-terminal amino acids in the $\alpha$-subunit of these glycoprotein hormones, a tethered-molecule was constructed by fusing the $NH_2$-terminus of the $\alpha$-subunit to the COOH-terminus of the $\beta$-subunit of equine chorionic gonadotropin (eCG). The following deletion mutants were created by PCR; Ile was inserted at position 96 to form ${\Delta}96$, Lys was substituted at position 95 to form ${\Delta}95$, His was inserted at position 93 to form ${\Delta}93$ and Tyr was substituted at position 87 to form ${\Delta}87$. Each mutant was transfected into CHO-K1 cells. Tethered-wt eCG, and ${\Delta}96$, ${\Delta}95$, and ${\Delta}93$ mutants were efficiently secreted into the medium but the ${\Delta}87$ mutant was not secreted. Interestingly, the RT-PCR, real-time PCR, and northern blot analyses confirmed that the RNA was transcribed in the ${\Delta}87$ mutant. However, the ${\Delta}87$ mutant protein was not detected in the medium or the intracellular fraction of the cell lysates. The LH- and FSH-like activities of the recombinant proteins were assayed in terms of cAMP production using rat LH/CG and rat FSH receptors. The metabolic clearance rate (MCR) was determined by injecting rec-eCG (2 IU) into the tail vein. The ${\Delta}95$ and ${\Delta}93$ mutants were completely inactive in both the LH- and FSH-like activity assays. The ${\Delta}96$ mutant showed slight activity in the LH-like activity assay. In comparison to the wild type, the activity of the ${\Delta}96$ mutant in the FSH-like activity assay was the highest among all the mutants. The MCR assay in which rec-eCG was injected showed a peak at 10 min in all the treatment groups, which disappeared 4 h after injection. These results imply a direct interaction between the receptor and the COOH-terminal region of the a-subunit. The data also reveal a significant difference in the mechanism by which the eCG hormone interacts with the rLH and rFSH receptors. The COOH-terminal region of the $\alpha$-subunit is very important for the secretion and functioning of this hormone.

Studies on the Benomyl Resistance of Oyster Mushroom (Pleurotus spp.) (느타리버섯의 Benomyl 저항성(抵抗性)에 관한 연구(硏究))

  • Yoo, Sung-Joon;Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • The mycelial growth of some mushrooms was inhibited by benomyl treatment. The $ED_{50}$ of benomyl to that of Pleurotus spp., Agaricus bisporus and Flammulina velutipes was 25ppm, 50ppm and 200ppm, respectively, which indicates the former was the most sensitive to the fungicide. The mycelial growth of mushrooms growing on artificial media amended by benomyl was increased when they were cultured successively 5 times and 10 times on the media. The increasing rate of that of each mushroom was the highest at the concentration of $ED_{50}$ of benomyl. The mycelial growth of P. ostreatus was increased progressively as the number of successive culturing increased, while that of P. florida and A. bisporus was increased until they were cultured successively up to 5 times and 7 times, respectively, but they were decreased after that. Mutant sectors of mycelia were induced by successive treatment of benomyl. Mutant sectors of P. ostreatus appeared earlier than those of P. florida and all of them were induced earlier on the media of low contration of benomyl than on that of high concentration. The mycelia of mutant sectors induced by benomyl treatment grow faster than those of mother colony treated with benomyl successively, but there was no difference in resistance against the fungicide between them. The increase of mycelial growth of the mushrooms culturing successively on media containing benomyl indicated that they might obtain the resistance against benomyl.

  • PDF

Control of Ragweed (Ambrosia artemisiifolia) of Mutant N-29 Broth Filtrate of Streptomyces scopuliridis KR-001 (토양 방선균 N-29 배양 여액의 생태계교란 식물 돼지풀 방제효과)

  • Kim, Jae-Deok;Kim, Young-Sook;Kwak, Hwa-Sook;Kim, Hye-Jin;Lee, Youn-Me;Ko, Young-Kwan;Park, Kee-Woong;Choi, Jung-Sup
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • We isolated Streptomyces scopuliridis KR-001 that produced herbicidal active metabolite(s) against several grass and broad leaf weeds. In this study, potential as natural herbicide of mutant N-29 broth filtrate of S. scopuliridis KR-001 was investigated to Ambrosia artemisiifilia in a greenhouse and field condition. The broth filtrate of mutant N-29 by foliar application showed a strong herbicidal activity to A. artemisiifilia with leaf stage in a greenhouse condition. Also, field trial of foliar application within treatment range had effectively controlled with early and middle stage of A. artemisiifilia at the natural habitats. Phytotoxic symptoms of mutant N-29 broth filtrate by foliar application were wilting and discoloration, and burn-down of leaves and finally plant death. These results suggest that mutant N-29 broth filtrate is considered possible as a natural herbicide for controlling environmentally friend to invasive alien plant such as A. artemisiifilia and may provide a new lead molecule for a more efficient herbicide.