• Title/Summary/Keyword: Mutant

Search Result 2,847, Processing Time 0.037 seconds

Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy

  • Zhao, Xueyan;Yang, Qiang;Zhao, Kewei;Jiang, Chao;Ren, Dongren;Xu, Pan;He, Xiaofang;Liao, Rongrong;Jiang, Kai;Ma, Junwu;Xiao, Shijun;Ren, Jun;Xing, Yuyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.925-937
    • /
    • 2016
  • In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive $F_1$ piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive $F_1$ boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive $F_1$ sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. cDNA sequencing and western blot indicated that the exogenous BMPR1B CDS was successfully expressed in host pigs. The transgenic pigs showed normal litter size performance. However, no significant differences in litter size were found between transgene-positive and negative sows. Our study provides new insight into producing cloned transgenic livestock related to reproductive traits.

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionic Gonadotropin Receptor

  • Min, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$ -subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$-subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t631 or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632~653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agoinst-occupied receptors ~2- and ~17- fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Identification of multiple key genes involved in pathogen defense and multi-stress tolerance using microarray and network analysis (Microarray와 Network 분석을 통한 병원균 및 스트레스 저항성 관련 주요 유전자의 대량 발굴)

  • Kim, Hyeongmin;Moon, Suyun;Lee, Jinsu;Bae, Wonsil;Won, Kyungho;Kim, Yoon-Kyeong;Kang, Kwon Kyoo;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.347-358
    • /
    • 2016
  • Brassinosteroid (BR), a plant steroid hormone, plays key roles in numerous growth and developmental processes as well as tolerance to both abiotic and biotic stress. To understand the biological networks involved in BR-mediated signaling pathways and stress tolerance, we performed comparative genome-wide transcriptome analysis of a constitutively activated BR bes1-D mutant with an Agilent Arabidopsis $4{\times}44K$ oligo chip. As a result, we newly identified 1,091 (562 up-regulated and 529 down-regulated) significant differentially expressed genes (DEGs). The combination of GO enrichment and protein network analysis revealed that stress-related processes, such as metabolism, development, abiotic/biotic stress, immunity, and defense, were critically linked to BR signaling pathways. Among the identified gene sets, we confirmed more than a 6-fold up-regulation of NB-ARC and FLS2 in bes1-D plants. However, some genes, including TIR1, TSA1 and OCP3, were down-regulated. Consistently, BR-activated plants showed higher tolerance to drought stress and pathogen infection compared to wild-type controls. In this study, we newly developed a useful, comprehensive method for large-scale identification of critical network and gene sets with global transcriptome analysis using a microarray. This study also showed that gain of function in the bes1-D gene can regulate the adaptive response of plants to various stressful conditions.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

Isolation of Mycoplasma pneumoniae and Antimicrobial Susceptibilities of the Isolates(III) (Mycoplasma pneumoniae의 분리 및 항생제 감수성 검사(III))

  • Chang Myung-Woong;Kim Kwang-Hyuk;Park In-Dal;Song Gap-Young;Kim Sung-Won;Lee Eun-young;Kim Moon-Chan;Cho Myung-Hoon;Kim Kyu-Earn;Choi Choong-Eon;Park Seon Yeong;Jo Hyeon Jang
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.479-485
    • /
    • 2005
  • The 994 throat swabs obtained from 688 adults and 306 children patients with respiratory diseases were examined for Mycoplasma pneumoniae infection by culture method. Antimicrobial susceptibilities of the resulting 123 M. pneumoniae isolates were evaluated by testing minimum inhibitory concentrations (MICs) of erythromycin, minocycline, tetracycline, josamycin, sparfloxacin, ofloxacin, and ciprofloxacin by a broth micro-dilution method. The erythromycin resistant strains of M. pneumoniae was determined above $1.0{\mu}g/ml$ of MIC for erythromycin. The erythromycin resistant strains of M. pneumoniae was confirmed resistant gene mutation of the portions of genes 23S rRNA (domain II and V), and ribosomal protein 14 and L22 by PCR amplified and their nucleotide sequenses were compared to those of the susceptible strain M129. The isolation rate of M. pneumoniae was $12.9\%$ (89/688) for the adults and $11.1\%$ (34/306) for the children. The $MICs_{90}$ of the M. pneumoniae isolates were $0.12{\mu}g/ml$ for minocycline, $0.25{\mu}g/ml$ for sparfloxacin, $0.5{\mu}g/ml$ for ciprofloxacin, ofloxacin, and tetracycline, respectively, and $2.0{\mu}g/ml$ for josamycin and erythromycin, respectively. The isolation rate of erythromycin resistant M. pneumoniae from patients was $49.4\%\;(44/89)$ for the adults, $47.1\%\;(16/34)$ for children, and $48.8\%\;(60/123)$ for the total. No mutation could be detected in the ribosomal protein L22 region, but all strains were mutated in the ribosomal protein L4 as two point mutation M144V. Two point mutations in domain V of 23S rRNA were selected in the presense of erythromycin resistant M. pneumoniae isolates, such as one strain was G2057C mutant, two strains were A2059C mutants, three strains were C2611G mutants, four strains were A2058C mutants, five strains were A2058T mutants, twenty strains were A2059G mutants, and twenty-five strains were A2058G mutants, respectively. These results show that erythromycin was not the most active compound against M. pneumoniae infection in Korea and clinical studies of macrolides in human patients are demanded.

Diagnosis of Pigs Producing PSE Meat using DNA Analysis (DNA검사기법을 이용한 PSE 돈육 생산 돼지 진단)

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.349-354
    • /
    • 2004
  • Stress-susceptible pigs have been known as the porcine stress syndrome (PSS), swine PSS, also known as malignant hyperthermia (MH), is characterized as sudden death and production of poor meat quality such as PSE (pale, soft and exudative) meat after slaughtering. PSS and PSE meat cause major economic losses in the pig industry. A point mutation in the gene coding for the ryanodine receptor (RYR1) in porcine skeletal muscle, also known calcium (Ca$^{2+}$) release channel, has been associated with swine PSS and halothane sensitivity. We used the PCR-RFLP(restriction fragment length polymorphism) and PCR-SSCP (single strand conformation polymorphism) methods to detect the PSS gene mutation (C1843T) in the RYR1 gene and to estimate genotype frequencies of PSS gene in Korean pig breed populations. In PCR-RFLP and SSCP analyses, three genotypes of homozygous normal (N/M), heterozygous carrier (N/n) and homozygous recessive mutant (n/n) were detected using agarose or polyacrylamide gel electrophoresis, respectively. The proportions of normal, carrier and PSS pigs were 57.1, 35.7 and 7.1% for Landrace, 82.5, 15.8 and 1.7% far L. Yorkshire, 95.2, 4.8 and 0.0% for Duroc and 72.0, 22.7 and 5.3% for Crossbreed. Consequently, DNA-based diagnosis for the identification of stress-susceptible pigs of PSS and pigs producing PSE meat is a powerful technique. Especially, PCR-SSCP method may be useful as a rapid, sensitive and inexpensive test for the large-scale screening of PSS genotypes and pigs with PSE meat in the pork industry.y.

A Study of Water Quality and Fish Community in Lake Doam (도암호의 수질과 어류군집 특성 연구)

  • Lee, Sang-Ha;Lee, Kwang-Yeol;Jang, Young-Su;Lim, In-Soo;Heo, Woo-Myung;Kim, Jai-Ku;Kim, Bom-Chul;Choi, Jae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.167-177
    • /
    • 2006
  • Both fish community and water quality in Lake Doam were investigated from September 2004 to August 2005. The turbidity of Lake Doam located in the upper region of the Songchun River in the South River system, Korea was high whole year due to the effects of distributed non point source pollutions in the watersheds. During the experimental periods, mean concentration of chlorophyll-a in epilimnetic layer (0 ${\sim}$ 5 m) was 18.5 ${\mu}g\;L^{-1}$ and transparency ranged from 0.3 m to 2.4 m. Average TP and TN concentrations were 111 ${\mu}g\;L^{-1}$ and 4.1 $mg\;L^{-1}$, respectively. Lake was classified as eutrophic state based on the nutrient concentrations suggested by U.S.EPA (1976). Total number of fish collected in Lake Doam was 9,600 individuals in 26 species of 6 family. Both dominant and subdominant species in the lake were P. herzi (34.9%) and Z. platypus (22.5%), respectively. Occurrence of water column species was high at upper region of the lake, whereas benthic type of species highly ,appeared in downstream area. The different fish assemblage between upper and lower area would be considered as the difference of bottom substrate and concentrations of suspended solids. In addition high appearance of Comat type of fish that is hybrid between gold fish (C, auratus) and C. auratus was found in the lake. It was unclear the reasons that high proportion of mutant species appeared in the lake. More researches are required in this area in future.

Enhancement of the Thermostability of a Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH51 (Bacillus amyloliquefaciens CH51이 생산하는 혈전용해효소의 열안정성 개선)

  • Kim, Jieun;Choi, Kyoung-Hwa;Kim, Jeong Hwan;Song, Young-Sun;Cha, Jaeho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2013
  • AprE51 from Bacillus amyloliquefaciens CH51 is a 27 kDa subtilisin-like protease with fibrinolytic activity. AprE51-6 showing increased catalytic activity was produced previously. To enhance the thermostability of AprE51-6, 2 residues, Gly-166 and Asn-218 based on B. subtilis subtilisin E were mutated by site-directed mutagenesis. The results of the mutational analysis showed that substitution of arginine for Gly-166 (AprE51-7) increased the fibrinolytic activity 1.8-fold. An N218S mutant (AprE51-8) also increased the fibrinolytic activity up to 4.5-fold in a fibrin plate assay. Purified AprE51-7 and AprE51-8 mutants had a 1.9- and a 2.5-fold higher $k_{cat}$, respectively, and a 2.1-1.9-fold lower $K_m$, respectively. This resulted in a 3.8- and a 4.7-fold increase in catalytic efficiency ($k_{cat}/K_m$), respectively, relative to that of wild-type AprE51. AprE51-8 had a broader pH range than AprE51-6 and nattokinase, especially at an alkaline pH value. In addition, AprE51-8 showed higher thermostability than AprE51-6 at $60^{\circ}C$. The half-lives of AprE51-7 and AprE51-8 at $50^{\circ}C$ were 21.5 and 27.3 min, respectively, which are 2.0 and 2.6 times longer, respectively, than that of the wild-type AprE51.

Hsp70 and IKKγ Synergistically Suppress the Activation of NF-κB (Hsp70와 IKKγ에 의한 NF-κB 활성억제의 상승효과)

  • Kim, Mi Jeong;Kim, Ka Hye;Kim, Moon Jeong;Kim, Jin Ik;Choi, Hye Jung;Moon, Ja Young;Joo, Woo Hong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.991-998
    • /
    • 2016
  • NF-κB acts as a critical transcription factor for the survival of cells via the induction of antiapoptotic genes. Constitutive activation of NF-κB in many types of solid tumors suggests that the inhibition of NF-κB might prevent or inhibit tumorigenesis. Although a number of studies demonstrated that Hsp70 regulated NF-κB activity, the exact mechanism is not clear. This study investigated the functional relationship of Hsp70 and IKKγ in the regulation of NF-κB activation using expression plasmids of components of the IKK complex. Wild-type and deletion mutants of IKKγ were expressed together with Hsp70, and the combined regulatory effect of Hsp70 and IKKγ on NF-κB activation was assayed. Hsp70 suppressed the activation of NF-κB in a reporter plasmid assay. Hsp70 also suppressed the phosphorylation and degradation of IκBα. The suppressive effect of Hsp70 on NF-κB activation was synergistically elevated by IKKγ. The N-terminal IKKβ binding site, C-terminal leucine zipper, and zinc finger domains of IKKγ were not necessary for the suppressive effect. Furthermore, Hsp70 and IKKγ synergistically suppressed the induction of COX-2 expression by lipopolysaccharides in RAW264.7 cells. These results suggest that overexpression of Hsp70 and IKKγ may be a strategic method for inhibition of NF-κB and related diseases.

Regulation of xylA Gene Expression in Escherichia coli (대장균에서 xylA 유전자의 발현조절)

  • Ghang, G-Hee;Roh, Dong-Hyun;Kang, Byung-Tae;Rhee, In-Koo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.430-436
    • /
    • 1996
  • The induction by xylose and repression by glucose of xylose isomerase(XI) were investigated to elucidate the regulation for production of XI in Escherichia coli. Regulation for expression of xyIA gene which codes XI is under control of xylR which is a regulatory gene for xylose catabolism. When xyIR gene was resided in chromosome, the inductions of XI by the addition of 0.4% xylose were increased to 1.9 and 1.7-fold in case of locating on multicopy(pEX202/DH77) and low copy Plasmid(pEX102/DH77), respectively, as compared with that of xylA gene which was resided in chromosome(JM109). xyIR gene product derived from xyIR gene on chromosome might react to xylA gene on the plasmid as same as xylA gene on chromosome. In JM109 and xylA transformant; pEX202/DH77 and pEX102/DH77, the inductions of XI were completely repressed by the addition of 0.2% glucose and these catabolite repressions were derepressed by the addition of 1 mM cAMP In comparison with the addition of 0.4% xylose only for the induction XI was inductively produced 1.7 to 2-fold with the addition of xylose plus 1 mM cAMP in DM minimal media. pEX13/TP2010, xylA transformant of the deficient mutant($xyl^-,\;cya^-$; TP2010) of XI and cAMP production, did not induce XI by the addition of xylose only but induced in case of simultaneous addition of xylose and cAMP. These results show that cAMP and xylose are the indispensable effectors for the induction and derepression of Xl in E. coli.

  • PDF