본 논문에서는 새로운 형태의 스펙트럼 특징인 스펙트럼 대비 MFCC (SCMFCC)를 제안하고 음악 장르 분류 성능을 분석하였다. 음악 장르 분류를 위해서는 장르 간의 차이를 두드러지게 할 수 있는 특징을 사용해야 하므로, 음악의 화음 구조 및 강약을 잘 표현하는 스펙트럼 대비 특징들이 관심을 받아왔다. 본 논문에서 제안된 SCMFCC는 멜 켑스트럼 상에서 스펙트럼의 대비를 이용하여 기존의 MFCC를 음악 분류에 적합하도록 변형했다. 널리 사용되고 있는 음악 장르 데이터베이스에서 실험을 수행하여, 제안된 SCMFCC 특징의 음악 장르 분류 성능을 기존의 다른 특징들과 비교하였다.
Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.
음악 장르는 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 필수적인 요소이다. 일반적으로 장르 분류를 위한 스펙트럼 특징은 음악의 화음 및 강약 구조를 표현하기 위해 부밴드로 분해하여 구해진다. 본 논문은 음악 장르 분류 성능 개선을 위한 특징 추출을 위한 부밴드 분해 방법에 관해 연구하였다. 또한 부밴드 음악 특징의 차수를 줄일 수 있는 방법에 대해서도 연구하였다. 널리 사용되고 있는 장르 데이터셋들에서 실험을 수행하여 널리 사용되고 있는 옥타브 스케일보다 세분화된 부밴드 분해가 장르 분류 성능을 향상시킬 수 있으며, 특징 차수 축소를 결합하여 분류기의 계산량도 줄일 수 있음을 보였다.
본 논문은 음악신호의 옥타브 밴드 상에서 주파수와 시간 방향의 순서 통계량에 기반한 음악분류기에 대한 연구이다. 음악의 화음 및 강약 구조를 표현하기 위해서 파워스펙트럼의 옥타브 밴드 순서 통계량을 이용하였다. 널리 사용되고 있는 두 음악 데이터셋을 이용한 성능 실험을 통해서, 옥타브 밴드 순서 통계량이 기존의 MFCC 와 옥타브밴드 스펙트럼 고저차 특징에 비해서 두 데이터셋에대해 각각 2.61 %와 8.9 % 장르 분류정확도가 개선되었다. 실험결과는 옥타브 밴드 순서 통계량이 음악 장르 분류에 적합함을 보인다.
일부 음악 장르 분류에 관한 기존 연구에서는 특징 추출을 위한 구간 선택 시 사람이 직접 곡의 주요 구간을 지정하는 방법을 사용하였다. 이러한 방법은 분류 성능이 좋은 반면 수작업으로 인한 부담으로 새롭게 등록되는 음악들에 대해 지속적으로 적용하기가 곤란하다. 수작업 없이 음악 특징을 추출하기 위해 최근 음악 장르 분류와 관련된 연구에서는 자동으로 추출구간을 선정하는 방법을 사용하고 있지만 이러한 연구의 대부분이 고정된 구간 (예, 30초 이후의 30초 구간)에서 특징을 추출하는 관계로 분류의 정확도가 떨어지는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 곡 전체 구간에 대하여 반복구간들을 파악하고 이들의 위치와 에너지를 고려하여 곡을 대표할 수 있는 단일 대표구간을 선정한 후, 대표구간으로 부터 특징을 추출하여 장르 분류시스템에 적용하는 방법을 제안하였다. 실험 결과, 기존 고정구간을 사용한 방법에 비해 괄목할 만한 성능 향상을 얻을 수 있었다.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.27-32
/
2024
Reliable and fine-grained musical metadata are required for efficient search of rapidly increasing music files. In particular, since the primary motive for listening to music is its emotional effect, diversion, and the memories it awakens, emotion classification along with genre classification of music is crucial. In this paper, as an initial approach towards a "ground-truth" dataset for music emotion and genre classification, we elaborately generated a music corpus through labeling of a large number of ordinary people. In order to verify the suitability of the dataset through the classification results, we extracted features according to MPEG-7 audio standard and applied different machine learning models based on statistics and deep neural network to automatically classify the dataset. By using standard hyperparameter setting, we reached an accuracy of 93% for genre classification and 80% for emotion classification, and believe that our dataset can be used as a meaningful comparative dataset in this research field.
본 논문에서는 multi-feature clustering(MFC) 방법을 이용한 강인한 내용 기반 음악 장르 분류 알고리즘을 제안한다. 기존 연구와 비교하여 본 논문에서는 입력 질의 패턴(또는 구간)과 입력 질의 길이의 변화에 따라 나타나는 불안정한 시스템 성능을 개선하는데 노력하였고, k-means clustering 기법에 기반한 multi-feature clustering(MFC)이라는 새로운 알고리즘을 제안하였다. 제안된 시스템의 성능을 검증하기 위해 질의 음악 파일의 서로 다른 여러 구간에서 질의 길이를 다변화하여 음악 특징 계수를 추출하였고, MFC 방법을 사용한 시스템과 MFC 방법을 사용하지 않은 시스템에 대한 장르 분류 성공률을 비교하여 제안 알고리즘의 성능을 비교${\cdot}$분석하였다. 모의실험 결과 MFC 방법을 사용한 시스템의 장르 분류 성공률이 높게 나타났고, 시스템의 안정성 역시 높게 나타났다.
음악 장르 분류를 위해서 다양한 종류의 특징 벡터들이 이용되고 있다. 대표적인 short-term 특징 벡터들로는 mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC) 등이 있으며, 이들의 long-term variation이 함께 이용된다. 본 논문에서는 OSC 특징을 추출하는데 있어서 하나의 옥타브 밴드 뿐만 아니라 다중 옥타브 밴드를 동시에 이용하여 옥타브 밴드 간 상관관계를 함께 반영할 수 있도록 하였다. 2012년도 music information retrieval evaluation exchange (MIREX) 평가회의 mixed 장르 분류 분야에서 4위를 한 알고리즘에 다중 옥타브 밴드를 이용한 결과, GTZAN과 Ballroom 데이터베이스에 대해서 각각 0.40% 포인트와 3.15% 포인트의 성능 향상을 얻을 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권4호
/
pp.1869-1886
/
2018
This paper proposes a MIDI- and audio-based music genre classification method for Korean traditional music. There are many traditional instruments in Korea, and most of the traditional songs played using the instruments have similar patterns and rhythms. Although music information processing such as music genre classification and audio melody extraction have been studied, most studies have focused on pop, jazz, rock, and other universal genres. There are few studies on Korean traditional music because of the lack of datasets. This paper analyzes raw audio and MIDI phrases in Korean traditional music, performed using Korean traditional musical instruments. The classified samples and MIDI, based on our classification system, will be used to construct a database or to implement our Kontakt-based instrument library. Thus, we can construct a management system for a Korean traditional music library using this classification system. Appropriate feature sets for raw audio and MIDI phrases are proposed and the classification results-based on machine learning algorithms such as support vector machine, multi-layer perception, decision tree, and random forest-are outlined in this paper.
최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정형용사들로 분류, 검색하여야 한다. 선행연구에서는 밝고 어두움을 기준으로 음악을 분류 하였다. 본 논문에서는 선행연구를 포함하여 사람이 느끼는 감정 중, 격렬함과 잔잔함, 그리고 웅장함과 가벼움 등, 3가지 분류 기준을 가지고 분위기에 알맞은 검색을 위한 감정 형용사 기반의 음악 분류 시스템을 제안한다. 분류 알고리즘으로는 Support Vector Machine을 개선한 알고리즘인 Variance Considered Machines을 이용하였으며, 총 525개의 곡을 분류 시도한 결과, 약 85%의 분류 정확도를 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.