• 제목/요약/키워드: Musical Genre Classification

검색결과 20건 처리시간 0.023초

스펙트럼 대비 MFCC 특징의 음악 장르 분류 성능 분석 (Study on the Performance of Spectral Contrast MFCC for Musical Genre Classification)

  • 서진수
    • 한국음향학회지
    • /
    • 제29권4호
    • /
    • pp.265-269
    • /
    • 2010
  • 본 논문에서는 새로운 형태의 스펙트럼 특징인 스펙트럼 대비 MFCC (SCMFCC)를 제안하고 음악 장르 분류 성능을 분석하였다. 음악 장르 분류를 위해서는 장르 간의 차이를 두드러지게 할 수 있는 특징을 사용해야 하므로, 음악의 화음 구조 및 강약을 잘 표현하는 스펙트럼 대비 특징들이 관심을 받아왔다. 본 논문에서 제안된 SCMFCC는 멜 켑스트럼 상에서 스펙트럼의 대비를 이용하여 기존의 MFCC를 음악 분류에 적합하도록 변형했다. 널리 사용되고 있는 음악 장르 데이터베이스에서 실험을 수행하여, 제안된 SCMFCC 특징의 음악 장르 분류 성능을 기존의 다른 특징들과 비교하였다.

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • 제20권1호
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.

음악 장르 분류를 위한 부밴드 분해와 특징 차수 축소에 관한 연구 (An investigation of subband decomposition and feature-dimension reduction for musical genre classification)

  • 서진수;김정현;박지현
    • 한국음향학회지
    • /
    • 제36권2호
    • /
    • pp.144-150
    • /
    • 2017
  • 음악 장르는 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 필수적인 요소이다. 일반적으로 장르 분류를 위한 스펙트럼 특징은 음악의 화음 및 강약 구조를 표현하기 위해 부밴드로 분해하여 구해진다. 본 논문은 음악 장르 분류 성능 개선을 위한 특징 추출을 위한 부밴드 분해 방법에 관해 연구하였다. 또한 부밴드 음악 특징의 차수를 줄일 수 있는 방법에 대해서도 연구하였다. 널리 사용되고 있는 장르 데이터셋들에서 실험을 수행하여 널리 사용되고 있는 옥타브 스케일보다 세분화된 부밴드 분해가 장르 분류 성능을 향상시킬 수 있으며, 특징 차수 축소를 결합하여 분류기의 계산량도 줄일 수 있음을 보였다.

옥타브밴드 순서 통계량에 기반한 음악 장르 분류 (A Musical Genre Classification Method Based on the Octave-Band Order Statistics)

  • 서진수
    • 한국음향학회지
    • /
    • 제33권1호
    • /
    • pp.81-86
    • /
    • 2014
  • 본 논문은 음악신호의 옥타브 밴드 상에서 주파수와 시간 방향의 순서 통계량에 기반한 음악분류기에 대한 연구이다. 음악의 화음 및 강약 구조를 표현하기 위해서 파워스펙트럼의 옥타브 밴드 순서 통계량을 이용하였다. 널리 사용되고 있는 두 음악 데이터셋을 이용한 성능 실험을 통해서, 옥타브 밴드 순서 통계량이 기존의 MFCC 와 옥타브밴드 스펙트럼 고저차 특징에 비해서 두 데이터셋에대해 각각 2.61 %와 8.9 % 장르 분류정확도가 개선되었다. 실험결과는 옥타브 밴드 순서 통계량이 음악 장르 분류에 적합함을 보인다.

대표구간의 음악 특징에 기반한 음악 장르 분류 (Music Genre Classification based on Musical Features of Representative Segments)

  • 이종인;김병만
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권11호
    • /
    • pp.692-700
    • /
    • 2008
  • 일부 음악 장르 분류에 관한 기존 연구에서는 특징 추출을 위한 구간 선택 시 사람이 직접 곡의 주요 구간을 지정하는 방법을 사용하였다. 이러한 방법은 분류 성능이 좋은 반면 수작업으로 인한 부담으로 새롭게 등록되는 음악들에 대해 지속적으로 적용하기가 곤란하다. 수작업 없이 음악 특징을 추출하기 위해 최근 음악 장르 분류와 관련된 연구에서는 자동으로 추출구간을 선정하는 방법을 사용하고 있지만 이러한 연구의 대부분이 고정된 구간 (예, 30초 이후의 30초 구간)에서 특징을 추출하는 관계로 분류의 정확도가 떨어지는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 곡 전체 구간에 대하여 반복구간들을 파악하고 이들의 위치와 에너지를 고려하여 곡을 대표할 수 있는 단일 대표구간을 선정한 후, 대표구간으로 부터 특징을 추출하여 장르 분류시스템에 적용하는 방법을 제안하였다. 실험 결과, 기존 고정구간을 사용한 방법에 비해 괄목할 만한 성능 향상을 얻을 수 있었다.

Multiclass Music Classification Approach Based on Genre and Emotion

  • Jonghwa Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.27-32
    • /
    • 2024
  • Reliable and fine-grained musical metadata are required for efficient search of rapidly increasing music files. In particular, since the primary motive for listening to music is its emotional effect, diversion, and the memories it awakens, emotion classification along with genre classification of music is crucial. In this paper, as an initial approach towards a "ground-truth" dataset for music emotion and genre classification, we elaborately generated a music corpus through labeling of a large number of ordinary people. In order to verify the suitability of the dataset through the classification results, we extracted features according to MPEG-7 audio standard and applied different machine learning models based on statistics and deep neural network to automatically classify the dataset. By using standard hyperparameter setting, we reached an accuracy of 93% for genre classification and 80% for emotion classification, and believe that our dataset can be used as a meaningful comparative dataset in this research field.

Multi-Feature Clustering을 이용한 강인한 내용 기반 음악 장르 분류 시스템에 관한 연구 (A Study on the Robust Content-Based Musical Genre Classification System Using Multi-Feature Clustering)

  • 윤원중;이강규;박규식
    • 대한전자공학회논문지SP
    • /
    • 제42권3호
    • /
    • pp.115-120
    • /
    • 2005
  • 본 논문에서는 multi-feature clustering(MFC) 방법을 이용한 강인한 내용 기반 음악 장르 분류 알고리즘을 제안한다. 기존 연구와 비교하여 본 논문에서는 입력 질의 패턴(또는 구간)과 입력 질의 길이의 변화에 따라 나타나는 불안정한 시스템 성능을 개선하는데 노력하였고, k-means clustering 기법에 기반한 multi-feature clustering(MFC)이라는 새로운 알고리즘을 제안하였다. 제안된 시스템의 성능을 검증하기 위해 질의 음악 파일의 서로 다른 여러 구간에서 질의 길이를 다변화하여 음악 특징 계수를 추출하였고, MFC 방법을 사용한 시스템과 MFC 방법을 사용하지 않은 시스템에 대한 장르 분류 성공률을 비교하여 제안 알고리즘의 성능을 비교${\cdot}$분석하였다. 모의실험 결과 MFC 방법을 사용한 시스템의 장르 분류 성공률이 높게 나타났고, 시스템의 안정성 역시 높게 나타났다.

다중 옥타브 밴드 기반 음악 장르 분류 시스템 (Musical Genre Classification System based on Multiple-Octave Bands)

  • 변가람;김무영
    • 전자공학회논문지
    • /
    • 제50권12호
    • /
    • pp.238-244
    • /
    • 2013
  • 음악 장르 분류를 위해서 다양한 종류의 특징 벡터들이 이용되고 있다. 대표적인 short-term 특징 벡터들로는 mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC) 등이 있으며, 이들의 long-term variation이 함께 이용된다. 본 논문에서는 OSC 특징을 추출하는데 있어서 하나의 옥타브 밴드 뿐만 아니라 다중 옥타브 밴드를 동시에 이용하여 옥타브 밴드 간 상관관계를 함께 반영할 수 있도록 하였다. 2012년도 music information retrieval evaluation exchange (MIREX) 평가회의 mixed 장르 분류 분야에서 4위를 한 알고리즘에 다중 옥타브 밴드를 이용한 결과, GTZAN과 Ballroom 데이터베이스에 대해서 각각 0.40% 포인트와 3.15% 포인트의 성능 향상을 얻을 수 있었다.

Korean Traditional Music Genre Classification Using Sample and MIDI Phrases

  • Lee, JongSeol;Lee, MyeongChun;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1869-1886
    • /
    • 2018
  • This paper proposes a MIDI- and audio-based music genre classification method for Korean traditional music. There are many traditional instruments in Korea, and most of the traditional songs played using the instruments have similar patterns and rhythms. Although music information processing such as music genre classification and audio melody extraction have been studied, most studies have focused on pop, jazz, rock, and other universal genres. There are few studies on Korean traditional music because of the lack of datasets. This paper analyzes raw audio and MIDI phrases in Korean traditional music, performed using Korean traditional musical instruments. The classified samples and MIDI, based on our classification system, will be used to construct a database or to implement our Kontakt-based instrument library. Thus, we can construct a management system for a Korean traditional music library using this classification system. Appropriate feature sets for raw audio and MIDI phrases are proposed and the classification results-based on machine learning algorithms such as support vector machine, multi-layer perception, decision tree, and random forest-are outlined in this paper.

지능형 음악분수 시스템을 위한 환경 및 분위기에 최적화된 음악분류에 관한 연구 (Study of Music Classification Optimized Environment and Atmosphere for Intelligent Musical Fountain System)

  • 박준형;박승민;이영환;고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.218-223
    • /
    • 2011
  • 최근 음악을 장르로 분류하는 다양한 연구가 진행되고 있다. 하지만 이러한 분류는 전문가들 마다 분류하는 기준이 서로 상이하여 정확한 결과를 도출하기가 쉽지 않다. 또한 새로운 장르 출현 시, 새롭게 정의해야하는 번거로움이 발생한다. 따라서 음악을 장르로 구분하기 보다는 감정형용사들로 분류, 검색하여야 한다. 선행연구에서는 밝고 어두움을 기준으로 음악을 분류 하였다. 본 논문에서는 선행연구를 포함하여 사람이 느끼는 감정 중, 격렬함과 잔잔함, 그리고 웅장함과 가벼움 등, 3가지 분류 기준을 가지고 분위기에 알맞은 검색을 위한 감정 형용사 기반의 음악 분류 시스템을 제안한다. 분류 알고리즘으로는 Support Vector Machine을 개선한 알고리즘인 Variance Considered Machines을 이용하였으며, 총 525개의 곡을 분류 시도한 결과, 약 85%의 분류 정확도를 나타내었다.