• Title/Summary/Keyword: Musical Genre Classification

Search Result 20, Processing Time 0.024 seconds

Study on the Performance of Spectral Contrast MFCC for Musical Genre Classification (스펙트럼 대비 MFCC 특징의 음악 장르 분류 성능 분석)

  • Seo, Jin-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.265-269
    • /
    • 2010
  • This paper proposes a novel spectral audio feature, spectral contrast MFCC (SCMFCC), and studies its performance on the musical genre classification. For a successful musical genre classifier, extracting features that allow direct access to the relevant genre-specific information is crucial. In this regard, the features based on the spectral contrast, which represents the relative distribution of the harmonic and non-harmonic components, have received increased attention. The proposed SCMFCC feature utilizes the spectral contrst on the mel-frequency cepstrum and thus conforms the conventional MFCC in a way more relevant for musical genre classification. By performing classification test on the widely used music DB, we compare the performance of the proposed feature with that of the previous ones.

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.

An investigation of subband decomposition and feature-dimension reduction for musical genre classification (음악 장르 분류를 위한 부밴드 분해와 특징 차수 축소에 관한 연구)

  • Seo, Jin Soo;Kim, Junghyun;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Musical genre is indispensible in constructing music information retrieval system, such as music search and classification. In general, the spectral characteristics of a music signal are obtained based on a subband decomposition to represent the relative distribution of the harmonic and the non-harmonic components. In this paper, we investigate the subband decomposition parameters in extracting features, which improves musical genre classification accuracy. In addition, the linear projection methods are studied to reduce the resulting feature dimension. Experiments on the widely used music datasets confirmed that the subband decomposition finer than the widely-adopted octave scale is conducive in improving genre-classification accuracy and showed that the feature-dimension reduction is effective reducing a classifier's computational complexity.

A Musical Genre Classification Method Based on the Octave-Band Order Statistics (옥타브밴드 순서 통계량에 기반한 음악 장르 분류)

  • Seo, Jin Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.81-86
    • /
    • 2014
  • This paper presents a study on the effectiveness of using the spectral and the temporal octave-band order statistics for musical genre classification. In order to represent the relative disposition of the harmonic and non-harmonic components, we utilize the octave-band order statistics of power spectral distribution. Experiments on the widely used two music datasets were performed; the results show that the octave-band order statistics improve genre classification accuracy by 2.61 % for one dataset and 8.9 % for another dataset compared with the mel-frequency cepstral coefficients and the octave-band spectral contrast. Experimental results show that the octave-band order statistics are promising for musical genre classification.

Music Genre Classification based on Musical Features of Representative Segments (대표구간의 음악 특징에 기반한 음악 장르 분류)

  • Lee, Jong-In;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.692-700
    • /
    • 2008
  • In some previous works on musical genre classification, human experts specify segments of a song for extracting musical features. Although this approach might contribute to performance enhancement, it requires manual intervention and thus can not be easily applied to new incoming songs. To extract musical features without the manual intervention, most of recent researches on music genre classification extract features from a pre-determined part of a song (for example, 30 seconds after initial 30 seconds), which may cause loss of accuracy. In this paper, in order to alleviate the accuracy problem, we propose a new method, which extracts features from representative segments (or main theme part) identified by structure analysis of music piece. The proposed method detects segments with repeated melody in a song and selects representative ones among them by considering their positions and energies. Experimental results show that the proposed method significantly improve the accuracy compared to the approach using a pre-determined part.

Multiclass Music Classification Approach Based on Genre and Emotion

  • Jonghwa Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.27-32
    • /
    • 2024
  • Reliable and fine-grained musical metadata are required for efficient search of rapidly increasing music files. In particular, since the primary motive for listening to music is its emotional effect, diversion, and the memories it awakens, emotion classification along with genre classification of music is crucial. In this paper, as an initial approach towards a "ground-truth" dataset for music emotion and genre classification, we elaborately generated a music corpus through labeling of a large number of ordinary people. In order to verify the suitability of the dataset through the classification results, we extracted features according to MPEG-7 audio standard and applied different machine learning models based on statistics and deep neural network to automatically classify the dataset. By using standard hyperparameter setting, we reached an accuracy of 93% for genre classification and 80% for emotion classification, and believe that our dataset can be used as a meaningful comparative dataset in this research field.

A Study on the Robust Content-Based Musical Genre Classification System Using Multi-Feature Clustering (Multi-Feature Clustering을 이용한 강인한 내용 기반 음악 장르 분류 시스템에 관한 연구)

  • Yoon Won-Jung;Lee Kang-Kyu;Park Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.115-120
    • /
    • 2005
  • In this paper, we propose a new robust content-based musical genre classification algorithm using multi-feature clustering(MFC) method. In contrast to previous works, this paper focuses on two practical issues of the system dependency problem on different input query patterns(or portions) and input query lengths which causes serious uncertainty of the system performance. In order to solve these problems, a new approach called multi-feature clustering(MFC) based on k-means clustering is proposed. To verify the performance of the proposed method, several excerpts with variable duration were extracted from every other position in a queried music file. Effectiveness of the system with MFC and without MFC is compared in terms of the classification accuracy. It is demonstrated that the use of MFC significantly improves the system stability of musical genre classification performance with higher accuracy rate.

Musical Genre Classification System based on Multiple-Octave Bands (다중 옥타브 밴드 기반 음악 장르 분류 시스템)

  • Byun, Karam;Kim, Moo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.238-244
    • /
    • 2013
  • For musical genre classification, various types of feature vectors are utilized. Mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), and octave-based spectral contrast (OSC) are widely used as short-term features, and their long-term variations are also utilized. In this paper, OSC features are extracted not only in the single-octave band domain, but also in the multiple-octave band one to capture the correlation between octave bands. As a baseline system, we select the genre classification system that won the fourth place in the 2012 music information retrieval evaluation exchange (MIREX) contest. By applying the OSC features based on multiple-octave bands, we obtain the better classification accuracy by 0.40% and 3.15% for the GTZAN and Ballroom databases, respectively.

Korean Traditional Music Genre Classification Using Sample and MIDI Phrases

  • Lee, JongSeol;Lee, MyeongChun;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1869-1886
    • /
    • 2018
  • This paper proposes a MIDI- and audio-based music genre classification method for Korean traditional music. There are many traditional instruments in Korea, and most of the traditional songs played using the instruments have similar patterns and rhythms. Although music information processing such as music genre classification and audio melody extraction have been studied, most studies have focused on pop, jazz, rock, and other universal genres. There are few studies on Korean traditional music because of the lack of datasets. This paper analyzes raw audio and MIDI phrases in Korean traditional music, performed using Korean traditional musical instruments. The classified samples and MIDI, based on our classification system, will be used to construct a database or to implement our Kontakt-based instrument library. Thus, we can construct a management system for a Korean traditional music library using this classification system. Appropriate feature sets for raw audio and MIDI phrases are proposed and the classification results-based on machine learning algorithms such as support vector machine, multi-layer perception, decision tree, and random forest-are outlined in this paper.

Study of Music Classification Optimized Environment and Atmosphere for Intelligent Musical Fountain System (지능형 음악분수 시스템을 위한 환경 및 분위기에 최적화된 음악분류에 관한 연구)

  • Park, Jun-Heong;Park, Seung-Min;Lee, Young-Hwan;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.218-223
    • /
    • 2011
  • Various research studies are underway to explore music classification by genre. Because sound professionals define the criterion of music to categorize differently each other, those classification is not easy to come up clear result. When a new genre is appeared, there is onerousness to renew the criterion of music to categorize. Therefore, music is classified by emotional adjectives, not genre. We classified music by light and shade in precedent study. In this paper, we propose the music classification system that is based on emotional adjectives to suitable search for atmosphere, and the classification criteria is three kinds; light and shade in precedent study, intense and placid, and grandeur and trivial. Variance Considered Machines that is an improved algorithm for Support Vector Machine was used as classification algorithm, and it represented 85% classification accuracy with the result that we tried to classify 525 songs.