본 논문은 머신러닝을 활용하여 많은 양의 음악 데이터를 분류하여 장르 정보가 입력되어 있지 않은 음악 장르 분류 정확도 향상을 목표로 한다. 음악의 장르를 구분하기 위해 기존 연구에서 많이 사용되던 GTZAN 데이터 세트 대신 직접 데이터를 수집하고 전처리하는 방안을 제시한다. 이를 위해 GTZAN 데이터 세트보다 분류 성능이 뛰어난 데이터 세트를 생성하기 위해 Onset의 에너지 레벨이 가장 높은 일정 구간을 추출한다. 학습에 사용하는 음악 데이터의 주요 특성으로는 Mel Frequency Cepstral Coefficient(MFCC)를 포함한 57개의 특성을 이용한다. 전처리된 데이터를 통해 Support Vector Machine(SVM) 모델을 이용하여 Blues, Classical, Jazz, Country, Disco, Pop, Rock, Metal, Hiphop으로 분류한 학습 정확도가 85%를 기록하였고, 테스트 정확도가 71%를 보여주었다.
터보 등화기 시스템은 디코더와 등화기를 결합을 통해서 등화성능을 높일 수 있는 방법이다. 터보 등화기에는 주로 MAP 등화기가 사용되어 왔다. 하지만 MAP 등화기를 적용한 터보 등화기는 높은 계산 복잡도를 가지는 단점이 있다. 이러한 단점을 극복하고 데이터 전송 효율을 높이기 위해 선형 SISO-MMSE을 적용한 터보 등화기에 데이터 전송 효율을 높이기 위해 블라인드 알고리즘을 적용한 블라인드 터보 등화기가 제안되었다. 블라인드 터보등화기는 기존의 터보 등화기에 비해 등화 성능이 낮은 단점이 있다. 이를 보완하기 위해 우리는 MUSIC 알고리즘 기반의 빔포밍을 적용한 시스템을 제안한다. 시뮬레이션을 통해서 다양한 멀티패스 환경에서 제안된 시스템을 통한 등화 성능의 향상을 확인 할 수 있다.
Background and Objectives: Music listening has a concomitant effect on structural and functional organization of the brain. It helps in relaxation, mind training and neural strengthening. In relation to it, the present study was aimed to find the effect of Carnatic music listening training (MLT) on speech in noise performance in adults. Subjects and Methods: A total of 28 participants (40-70 years) were recruited in the study. Based on randomized control trial, they were divided into intervention and control group. Intervention group underwent a short-term MLT. Quick Speech-in-Noise in Kannada was used as an outcome measure. Results: Results were analysed using mixed method analysis of variance (ANOVA) and repeated measures ANOVA. There was a significant difference between intervention and control group post MLT. The results of the second continuum revealed no statistically significant difference between post training and follow-up scores in both the groups. Conclusions: In conclusion short-term MLT resulted in betterment of speech in noise performance. MLT can be hence used as a viable tool in formal auditory training for better prognosis.
Background and Objectives: Music listening has a concomitant effect on structural and functional organization of the brain. It helps in relaxation, mind training and neural strengthening. In relation to it, the present study was aimed to find the effect of Carnatic music listening training (MLT) on speech in noise performance in adults. Subjects and Methods: A total of 28 participants (40-70 years) were recruited in the study. Based on randomized control trial, they were divided into intervention and control group. Intervention group underwent a short-term MLT. Quick Speech-in-Noise in Kannada was used as an outcome measure. Results: Results were analysed using mixed method analysis of variance (ANOVA) and repeated measures ANOVA. There was a significant difference between intervention and control group post MLT. The results of the second continuum revealed no statistically significant difference between post training and follow-up scores in both the groups. Conclusions: In conclusion short-term MLT resulted in betterment of speech in noise performance. MLT can be hence used as a viable tool in formal auditory training for better prognosis.
본 논문은 다성음원에서 추출된 특성정보 기반 QbSH (Query-by-Singing/ Humming) 시스템의 매칭엔진에 대해 제안하였다. 다성음원 기반 QbSH 시스템은 사람의 노래나 허밍에서 추출된 특성정보와 MP3 파일과 같은 다성음원에서 추출된 특성정보를 비교하여, 가장 유사한 음원을 검색하는 시스템이다. 제안된 매칭엔진에는 다성음원에서 특성 추출시 발생하는 오류를 줄이고, 매칭성능을 향상시키기 위해 크로마-스케일 표현기법 (Chroma-Scale Representation), 보상기법 (Compensation) 및 비대칭적 DTW (Asymmetric Dynamic Time Warping) 알고리즘을 적용하였다. 또한 다양한 거리 함수 (Distance Metric)를 적용하여 매칭엔진의 성능향상을 확인하였다. 1,000개의 허밍 질의와 450곡의 다성음원 데이터베이스를 기반으로 제안한 QbSH 시스템의 성능 실험을 수행하다. 성능 평가를 통해 제안한 QbSH 시스템이 MRR (Mean Reciprocal Rank) 0.718의 정확도를 가지는 것으로 확인되었다.
본 논문은 스파이크그램과 심층 신경망을 이용한 새로운 음악 장르 분류 방법을 제안한다. 인간의 청각 시스템은 최소 에너지와 신경 자원을 사용하여 최대 청각 정보를 뇌로 전달하기 위하여 입력 소리를 시간과 주파수 영역에서 부호화한다. 스파이크그램은 이러한 청각 시스템의 부호화 동작을 기반으로 파형을 분석하는 기법이다. 제안하는 방법은 스파이크그램을 이용하여 신호를 분석하고 그 결과로부터 장르 분류를 위한 핵심 정보로 구성된 특성 벡터를 추출하고, 이를 심층 신경망의 입력 벡터로 사용한다. 성능 측정에는 10개의 음악 장르로 구성된 GTZAN 데이터 세트를 사용하였고, 제안 방법이 기존 방법에 비해 낮은 차원의 특성 벡터를 사용하여 우수한 성능을 제공하는 것을 확인하였다.
본 논문에서는 대역 확산 신호를 위한 고유치 해석 기반의 초 분해능 지연 시간 추정(super-resolution time delay estimation) 알고리즘을 개발하고 각 알고리즘의 성능을 비교, 분석한다. 먼저, 고유치 해석 기반의 대표적인 도래각 추정 알고리즘인 MUSIC, ESPRIT, Minimum-Norm을 이용하여 초 분해능 지연 시간 추정 알고리즘을 개발하고 직접 대역확산 방식의 ISO/IEC 24730-2.1 실시간 위치 추적 시스템 (real-time locating system: RTLS)에 적용하여 RTLS 환경에서 각 알고리즘의 성능을 시뮬레이션을 통해 비교, 분석한다. 시뮬레이션 결과로부터 세 알고리즘 모두 레일리이 분해능 한계 이내로 수신되는 다중 신호의 지연 시간을 모두 분리, 추정함을 알 수 있었다. 그러나, RTLS 환경에서는 MUSIC과 Minimum-Norm의 성능은 서로 비슷하나 ESPRIT은 두 알고리즘에 비해 성능이 현격히 저하됨을 알 수 있다.
본 논문에서는 실시간으로 MIDI (Musical Instrument Digital Interface)를 이용하여 음악을 연주학 수 있는 전자음악장갑 (Electronic Music Glove, EMG) 시스템을 소개한다. 마이크로 컨트롤러를 통해 장갑으로부터 입력받은 아날로그 신호를 분석하고, 이 신호를 MIDI 메시지로 변환한 후, 컴퓨터에 내장된 사운드카드의 MIDI 음원을 이용하여 스피커로 음악을 재생한다. 컴퓨터의 직렬 포트를 통해 손가락에 부탁된 센서들과 풋 스위치의 상태를 입력받아 C++ 언어로 작성한 프로그램에서 MIDI 메시지로 변환한다. EMG 시스템은 음표의 옥타브와 음표의 길이, 그리고 코러스나 잔향, 리듬 그리고 볼륨과 같은 다양한 음악적 효과를 MIDI를 이용해 제어할 수 있다.
We introduce a learning system for the sight reading of simple drum sequences. Sight reading is a cognitive-motor skill that requires reading of music symbols and actions of multiple limbs for playing the music. The system provides knowledge of results (KR) pertaining to the learner's performance by color-coding music symbols, and guides the learner by indicating the corresponding action for a given music symbol using additional auditory or vibrotactile cues. To evaluate the effects of KR and guidance cues, three learning methods were experimentally compared: KR only, KR with auditory cues, and KR with vibrotactile cues. The task was to play a random 16-note-long drum sequence displayed on a screen. Thirty university students learned the task using one of the learning methods in a between-subjects design. The experimental results did not show statistically significant differences between the methods in terms of task accuracy and completion time.
주파수 분석을 통해 음성과 음악의 특성을 살펴보면, 대부분 악기는 특정 주파수 소리를 지속적으로 내도록 고안되어 있다는 것을 알 수 있고, 음성은 조음 현상에 의해서 점차적인 주파수 변화가 발생하는 것을 알 수 있다. 본 논문에서는 이러한 음성과 음악이 갖고 있는 주파수 변화 특성을 이용하여 음성과 음악을 구별하는 방법을 제안한다. 즉, 음성과 음악을 구분해 주는 특성 값으로서 주파수 변화율을 사용하고자 한다. 제안한 주파수 변화율인 STR (spectral transition rate) 기반의 SMD (speech music discrimination) 실험 결과, 기존의 알고리즘보다 빠른 응답 속도에서 상대적으로 높은 성능을 보임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.