• 제목/요약/키워드: Music Artificial Intelligence

검색결과 48건 처리시간 0.02초

인공지능 작곡 프로그램을 활용한 음악 콘텐츠 제작 연구 (A Study on the production of Music Content Using Artificial Intelligence Composition Program)

  • 박다해
    • 트랜스-
    • /
    • 제13권
    • /
    • pp.35-58
    • /
    • 2022
  • 본 연구는 인공지능 기술의 발전이 음악 콘텐츠 제작에 가져올 패러다임의 변화를 예측하고, 인공지능과 인간의 협업을 통해 창작된 작품이 완성품으로써 예술적 가치를 지닐 수 있음을 제기한다. 인공지능 작곡 프로그램을 활용하여 누구나 손쉽게 음악 콘텐츠 제작을 할 수 있으며, 예술가에게는 다양한 시도와 창의적인 발상에 영감을 줄 수 있는 계기가 됐다. 인공지능 기술이 인간의 삶에 편리성을 제공하고, 일의 효율적인 측면에 많은 혜택을 주고 있지만, 현재까지 예술 영역에서 데이터 기반의 패턴 음악이라는 인식에서 벗어나기 어려운 점이 있다. 이러한 정량적인 요소가 많은 패턴 음악은 예술이 추구하는 추상적인 상징성이나 의미가 부재되어 완전한 창작품으로써 인정받지 못하고 있는 실정이다. 그러나 인간의 협업을 통해 감정이나 창의성과 같은 정성적인 요소를 인공지능 음악에 부여하면 완전한 예술 작품으로써 가치를 인정받을 수 있음을 예측한다. 인공지능 기술의 발전은 대중들에게 문화·예술에 대한 접근성을 높여주고, 심미적인 체험과 더불어 누구나 즐길 수 있는 유희적인 측면까지 기대할 수 있다. 또한, 개인의 디지털 리터러시의 향상을 통해 다양한 콘텐츠를 제작할 수 있으며, 자신의 작품을 타인에게 공유하며 소통할 수 있는 계기가 된다. 이처럼 인공지능 기술은 대중과 문화·예술을 잇는 매개체 역할을 하고 있으며, 예술 활동을 통해 인간과 기술을 간극을 좁히고 있다. 이러한 문화적인 현상과 함께 예술적 가치를 지닌 인공지능 음악 콘텐츠 제작 연구와 향후 인공지능 기술을 활용한 다양한 융·복합 예술 콘텐츠의 발전 가능성을 전망해 본다.

인공지능 기반 작곡 프로그램 현황 및 제언 (Artificial Intelligence Applications to Music Composition)

  • 이성훈
    • 문화기술의 융합
    • /
    • 제4권4호
    • /
    • pp.261-266
    • /
    • 2018
  • 본 연구는 인공지능 기반 작곡 프로그램 현황을 살펴보고 실정을 고려한 제언을 제공하고자 한다. 인공지능 기반 작곡 프로그램은 기존의 '전문가 시스템' 방식의 알고리즘을 벗어나 심층신경망 이론의 발전 및 빅데이터 처리 기술 향상과 더불어 눈부신 성장을 보이고 있다. 이에 따라 클래식 음악과, 팝음악을 작곡하는데 있어 인공지능 기반 작곡 프로그램이 학계와 산업계에서 다양하게 제안되고 있으며, 최근 수년 사이 대중의 평가도 달라지고 있다. 다만 해당 기술 개발과 관련하여 여전한 한계점들이 분명히 존재하는 바, 대중의 인식 문제, 데이터베이스화되지 않은 가치 있는 사료들의 누락, 관련 법규의 미비, 음악적인 부분보다는 기술적 관점에서 해당 산업이 주도되는 점 등을 개선할 필요가 있겠다. 이 같은 점이 보완된다면, 인공지능 기반 기술은 국가 경쟁력 확보와 유지에 있어 중요한 역할을 해낼 것으로 보인다.

알고리즘에 의한 음악의 작곡 (Algorithmic music composition)

  • 윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.652-655
    • /
    • 1997
  • An exploration for an intelligence paradigm has been delineated. Artificial intelligence and artificial life paradigms seem to fail to show the whole picture of human intelligence. We may understand the human intelligence better by adding the emotional part of human intelligence to the intellectual part of human intelligence. Emotional intelligence is investigated in terms of composing machine as a modern abstract art. Various algorithmic composition and performance concepts are currently being investigated and implemented. Intelligent mapping algorithms restructure the traditional predetermined composition algorithms. Music based on fractals and neural networks is being composed. Also, emotional intelligence and aesthetic aspects of Korean traditional music are investigated in terms of fractal relationship. As a result, this exploration will greatly broaden the potentials of the intelligence research. The exploration of art in the view of intelligence, information and structure will restore the balanced sense, of art and science which seeks happiness in life. The investigations of emotional intelligence will establish the foundations of intelligence, information and control technologies.

  • PDF

Evolution and Historical Review of Music in Mass Media

  • Kang-iL Um;Jiyoung Jung
    • International Journal of Advanced Culture Technology
    • /
    • 제12권3호
    • /
    • pp.370-379
    • /
    • 2024
  • In this paper, we explore the historical development and revolutionary impact of music in mass media across various forms, including radio, television, film, and digital platforms. The evolution of music in mass media reflects significant technological and cultural shifts over the past century. From the early days of radio to the advent of digital streaming, music has played a crucial role in shaping the types of mass media. Early radio broadcasts in the 1920s relied on live performances and recordings to captivate audiences, establishing music as a central element of media content. The rise of television in the 1950s brought new opportunities for music integration, with theme songs, variety shows, and music videos becoming staples of TV programming. The film industry further revolutionized the use of music, with iconic scores enhancing cinematic storytelling and emotional depth. The digital revolution of the late 20th century introduced new formats and services, expanding access to music and transforming consumption patterns. Recently, streaming platforms and social media allow for personalized music experiences and direct artist-fan interactions. Through an analysis of technological advancements, this study highlights the integral role of music in enhancing narrative, evoking emotions, and creating cultural identities. We present our understanding of this evolution to provide insights into future trends and potential innovations in the integration of music with mass media, including the use of artificial intelligence and virtual reality to create immersive auditory experiences.

Opera Clustering: K-means on librettos datasets

  • 정하림;유주헌
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.45-52
    • /
    • 2022
  • With the development of artificial intelligence analysis methods, especially machine learning, various fields are widely expanding their application ranges. However, in the case of classical music, there still remain some difficulties in applying machine learning techniques. Genre classification or music recommendation systems generated by deep learning algorithms are actively used in general music, but not in classical music. In this paper, we attempted to classify opera among classical music. To this end, an experiment was conducted to determine which criteria are most suitable among, composer, period of composition, and emotional atmosphere, which are the basic features of music. To generate emotional labels, we adopted zero-shot classification with four basic emotions, 'happiness', 'sadness', 'anger', and 'fear.' After embedding the opera libretto with the doc2vec processing model, the optimal number of clusters is computed based on the result of the elbow method. Decided four centroids are then adopted in k-means clustering to classify unsupervised libretto datasets. We were able to get optimized clustering based on the result of adjusted rand index scores. With these results, we compared them with notated variables of music. As a result, it was confirmed that the four clusterings calculated by machine after training were most similar to the grouping result by period. Additionally, we were able to verify that the emotional similarity between composer and period did not appear significantly. At the end of the study, by knowing the period is the right criteria, we hope that it makes easier for music listeners to find music that suits their tastes.

Usability Analysis and Improvement Plan for Intelligent Speakers in the 4th Industrial Revolution Environment

  • Seong-Hoon Lee;Dong-Woo Lee
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.119-125
    • /
    • 2023
  • Smart home in the 4th industrial revolution environment is where all devices in the home are connected to each other to provide the optimal living environment desired by the user. Artificial intelligence speakers are being used as a way to manage and control all devices used in this environment. The function of an artificial intelligence speaker ranges from simple music playback to serving as an interface that controls and manages all devices in a smart home space. In this study, we investigated and analyzed the usability of artificial intelligence speakers based on the current status of domestic and overseas markets and the survey contents of two organizations (Korea Consumer Agency and Korea Information and Communication Policy Institute (KISDI)). In addition, we investigated and analyzed the usability of artificial intelligence speakers. Based on the results of responses from users from two related organizations, major problems were derived, and major improvement measures, such as discovering new functions and improving voice recognition performance, were also described.

A Study on the Performance Improvement of MLP Model for Kodály Hand Sign Scale Recognition

  • Na Gyeom YANG;Dong Kun CHUNG
    • 한국인공지능학회지
    • /
    • 제12권3호
    • /
    • pp.33-39
    • /
    • 2024
  • In this paper, we explore the application of Kodaly hand signs in enhancing children's music education, performances, and auditory assistance technologies. This research focuses on improving the recognition rate of Multilayer Perceptron (MLP) models in identifying Kodaly hand sign scales through the integration of Artificial Neural Networks (ANN). We developed an enhanced MLP model by augmenting it with additional parameters and optimizing the number of hidden layers, aiming to substantially increase the model's accuracy and efficiency. The augmented model demonstrated a significant improvement in recognizing complex hand sign sequences, achieving a higher accuracy compared to previous methods. These advancements suggest that our approach can greatly benefit music education and the development of auditory assistance technologies by providing more reliable and precise recognition of Kodaly hand signs. This study confirms the potential of parameter augmentation and hidden layers optimization in refining the capabilities of neural network models for practical applications.

허밍: DeepJ 구조를 이용한 이미지 기반 자동 작곡 기법 연구 (Humming: Image Based Automatic Music Composition Using DeepJ Architecture)

  • 김태헌;정기철;이인성
    • 한국멀티미디어학회논문지
    • /
    • 제25권5호
    • /
    • pp.748-756
    • /
    • 2022
  • Thanks to the competition of AlphaGo and Sedol Lee, machine learning has received world-wide attention and huge investments. The performance improvement of computing devices greatly contributed to big data processing and the development of neural networks. Artificial intelligence not only imitates human beings in many fields, but also seems to be better than human capabilities. Although humans' creation is still considered to be better and higher, several artificial intelligences continue to challenge human creativity. The quality of some creative outcomes by AI is as good as the real ones produced by human beings. Sometimes they are not distinguishable, because the neural network has the competence to learn the common features contained in big data and copy them. In order to confirm whether artificial intelligence can express the inherent characteristics of different arts, this paper proposes a new neural network model called Humming. It is an experimental model that combines vgg16, which extracts image features, and DeepJ's architecture, which excels in creating various genres of music. A dataset produced by our experiment shows meaningful and valid results. Different results, however, are produced when the amount of data is increased. The neural network produced a similar pattern of music even though it was a different classification of images, which was not what we were aiming for. However, these new attempts may have explicit significance as a starting point for feature transfer that will be further studied.

A Study on the User Acceptance Model of Artificial Intelligence Music Based on UTAUT

  • Zhang, Weiwei
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.25-33
    • /
    • 2020
  • 본 연구는 정보 기술 수용 모델(UTAUT)을 사용하여 이 모형은 중국 내 적용성을 검증하였으며, 중국 시장의 실태에 따라 UTAUT에 새로운 변수 2개를 추가하여 연구 모델을 설립하였다. 이와 같이 본 연구의 목적은 성과기대, 노력기대, 사회영향력, 개인혁신성, 지각된 가치가 사용의도와 사용행동에 미치는 영향을 검증하고자 한다. 이러한 목적을 달성하기 위해 인터넷 조사 방식으로 중국에 있는 인공지능음악 제품을 사용 경험 있는 음악 창작자들을 대상으로 345부의 설문지가 수집되었다. 수집된 자료는 SPSS V. 22.0와 AMOS V 22.0을 통해 빈도분석, 요인분석, 신뢰도분석, 구조방정식모형분석을 실시하여 결과를 분석하였다. 연구모델에서 제시된 가설의 검증을 통해 중국 사용자들의 인공지능 음악 수용에 대한 사용에 결정적인 영향 요인을 확인하였다. 본 연구의 결과는 UTAUT모형이 중국 배경에서의 적용성을 검증하고, 중국 배경에서의 인공지능 음악 사용자 수용 모델을 구축하였으며, 3 가지 영향 요소가 사용자의 사용 의도에 영향을 미치며, 이러한 영향요소의 역할이 영향의 크기에 따라 정렬하는 것이 효과적이다. 본 연구는 인공지능 음악의 유용성을 높이고, 인공지능 음악의 유용성을 높이며, 개인 혁신적인 사용자를 활용해 경쟁력 있고 매력적인 가격 전략을 수립하고, 입소문 홍보에 주력할 것을 관리 조언하였다.

인공지능과 인간 전문가의 오디오 마스터링 비교 연구 (A Study on the Audio Mastering Results of Artificial Intelligence and Human Experts)

  • 허동혁;박재록
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제15권3호
    • /
    • pp.41-50
    • /
    • 2021
  • 인공지능에 의한 직업의 대체가 빠르게 진행되고 있지만, 창의성이 중요한 예술 분야에서는 예외로 여겨졌다. 예술과 기술의 경계에 있는 직업인 음악의 마스터링에서는 현재 여러 인공지능 마스터링 서비스가 운영 중이다. 일반적으로 인공지능의 마스터링은 전문 마스터링 엔지니어의 작업에 비해 품질이 낮다고 여겨진다. 본 논문에서는 인공지능 마스터링과 인간 마스터링을 음향 분석, 청취 실험, 전문가 인터뷰 과정을 통해 비교해 보았다. 음향 분석에서는 전문 마스터링 엔지니어의 결과물과 인공지능의 결과물에서 큰 차이는 관찰되지 않았다. 청취 실험의 경우 비음악인 그룹은 전문 마스터링 엔지니어의 결과물과 인공지능의 결과물의 음질 차이를 거의 구분하지 못했다. 음악인 그룹은 특정 음원에 대한 선호를 드러냈지만, 어느 특정 마스터링에 대한 일반적인 선호가 유의미하게 나타나지는 않았다. 전문가 심층인터뷰에서도 전문 마스터링 엔지니어와 인공지능 마스터링간의 음향적인 차이는 거의 없으며, 가장 큰 차이는 마스터링 서비스 제공자와 사용자 간의 소통 방식에 있다고 응답하였다. 또 향후 더 많은 데이터를 통한 훈련으로 인공지능 마스터링이 빠르게 품질 향상을 이룰 것이고 사용자와 인공지능 간의 소통 방식에서도 더 개선이 있을 것이라고 예상하였다.