• Title/Summary/Keyword: Musculoskeletal simulation

Search Result 35, Processing Time 0.035 seconds

Musculoskeletal model during isokinetic knee motion;Simulation and Experiment (슬관절 등속 운동시 하지근육구동모델;모의실험과 임상실험)

  • Bae, Tae-Soo;Cho, Hyeon-Seok;Kang, Sung-Jae;Choi, Kyong-Joo;Kim, Shin-Ki;Mun, Mu-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1554-1559
    • /
    • 2003
  • This study validated the musculoskeletal model of the human lower extremity by comparative study between calculated muscle parameters through simulation using modified hill-type model and measured them through isokinetic exercise. And the relationship between muscle forces and moments participated in motion was quantified from the results of simulation. For simulation of isokinetic motion, a three-dimensional anatomical knee model was constructed using trials of gait analysis and the EMG-force model was used to determine muscle activation level exciting muscles. The modified Hill-type model was used to calculate individual muscle forces and moments in dynmaic analysis and the results were validated by comparing them of experiments on BIODEX. The results showed that there was a high correlation between calculated torques from simulation and measured them from experiments for isokinetic motion(R=0.97). Therefore we concluded that the simulation by using musculoskeletal model was so useful means to predict and convalesce musculoskeletal-related diseases, and analyze unrealizable experiment such as clash condition.

  • PDF

Optimization of Hip Flexion/Extension Torque of Exoskeleton During Human Gait Using Human Musculoskeletal Simulation (인체 근골격 시뮬레이션을 활용한 인체 보행 시 외골격의 고관절 굴곡/신장 토크 최적화)

  • Hyeseon Kang;Jinhyun Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.117-121
    • /
    • 2023
  • Research on walking assistance exoskeletons that provide optimized torque to individuals has been conducted steadily, and these studies aim to help users feel stable when walking and get help that suits their intentions. Because exoskeleton auxiliary efficiency evaluation is based on metabolic cost savings, experiments on real people are needed to evaluate continuously evolving control algorithms. However, experiments with real people always require risks and high costs. Therefore, in this study, we intend to actively utilize human musculoskeletal simulation. First, to improve the accuracy of musculoskeletal models, we propose a body segment mass distribution algorithm using body composition analysis data that reflects body characteristics. Secondly, the efficiency of most exoskeleton torque control algorithms is evaluated as the reduction rate of Metabolic Cost. In this study, we assume that the torque minimizing the Metabolic Cost is the optimal torque and propose a method for obtaining the torque.

A Study of Musculoskeletal Disorders Reduction Scheme in Shipbuilding Process Using 3D Human Simulation (3차원 휴먼 시뮬레이션을 이용한 선박생산공정의 근골격계질환 감소방안 연구)

  • Min, Kyong-Cheol;Kim, Dong-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.119-125
    • /
    • 2008
  • Musculoskeletal disorders(MSDs) are one of the major issues in shipbuilding industry. Main risk factors of MSDs include manual handling of heavy weight, awkward posture, repetitive tasks, prolonged static muscle contraction, and so on. in this study, Using the three-dimensional digital human modeling and simulation method we made up a worker and work posture on a virtual environment. To verify this simulation we compared both traditional ergonomic analysis on a real worker and digital program analysis on a digital human. And this paper shows that it is possible to reduce the rate of MSDs in the shipbuilding industry because it means we can change poor posture mid surroundings into better ones.

The Role of Computer Simulation in Assessment and Treatment (근골격계 환자의 평가와 치료에 있어서 컴퓨터 시뮬레이션의 적용)

  • Shin, Sang-Hoon;Nam, Tong-Hyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.13 no.2
    • /
    • pp.140-148
    • /
    • 2009
  • The primary market of acupuncture treatment is concentrated on disorders of the musculoskeletal system. This study researches the clinical use of the musculoskeletal system evaluation with a computer simulation. Two fields are examined - patient evaluation and patient treatment. In the field of evaluation, the simulation is used to evaluates the prognosis of medical treatment. In the field of treatment, the simulation is used to decide the most suitable way to perform surgery using the quantitative evaluation about various cases of surgical results.

  • PDF

Analysis of Welding Positions for Reduction of Musculoskeletal Disorders Based on Simulation Technique (시뮬레이션 기법에 기초한 근골격계 질환 감소를 위한 용접자세 분석)

  • Park, Ju-Yong;Kim, Dong-Joon;Chang, Seong-Rok;Song, Chang-Sub
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.79-85
    • /
    • 2007
  • The industrial disaster caused by a work-related disease like a Musculoskeletal Disorders(MSDs) becomes a big social problem and increases rapidly. This leads to the degradation of the labor desire and the productivity. Welding work belongs to the work with a high intensity. This paper aims to analyze the welding work in the various positions from a view-point of the burden of the human musculoskeletal system and to propose the desired position with lower burden. For this purpose the real welding work was observed in the shipyard and analyzed using the RULA method, a powerful ergonomics tool. The 3-dimensional simulation model fur this work was also developed. In this model, ergonomics human model and welding work environment were built. This model was verified through the comparison to the real work. This paper showed that the improvement of welding position by changing the location of a stool and using some auxiliary tool can reduce the work intensity remarkably and lead to the decrease of MSDs.

Analysis on Human Musculoskeletal Structures with Application to Design of Adjustable Spring Mechanisms (인체의 근육구조에 대한 해석과 가변스프링 메커니즘 설계로의 적용)

  • 이병주;이재훈;김희국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.208-219
    • /
    • 1999
  • Springs have been employed in a wide range of mechanical systems. This work deals with the concept of an adaptable spring mechanism which can arbitrarily modulate its spring characteristics. The adaptable spring is desired for enhancing performances of various mechanical systems employing springs. We demonstrate that such adaptable springs can be realized by adapting anthropomorphic musculoskeletal structures of the human upper-extremity, which possesses highly nonlinear kinematic-coupling among redundant muscles existing in its structures. This phenomenon has been explained by several human arm models. Based on the analysis results, we propose multi-degree-of-freedom spring mechanisms resembling the musculoskeletal structure of the human upper-extremity, and verifiy the applicability of these mechanisms through simulation.

  • PDF

Evolution of Human Locomotion: A Computer Simulation Study (인류 보행의 진화: 컴퓨터 시뮬레이션 연구)

  • 엄광문;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

Analysis of Musculoskeletal Burdened Work among Nurses at a University Hospital (일개 대학병원 간호사의 근골격계 부담작업 분석)

  • Jeong, Eun-Hee;Koo, Jung‐Wan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • Severities of musculoskeletal diseases (MSDs) have been recognized at the regular work such as manufacturing but incidence of MSDs are increasing also at the atypical work. The examples of those are health medical workers, office workers and service workers etc. Nurses among health medical workers are accomplishing to manage and recover the patients' health in the first place. Therefore, they are exposed to very stressful work conditions during caring the patients. This study was performed to analyze the musculoskeletal burdened work among nurses at a university hospital, in order to grasp the realities of the MSDs, analyze and prevent MSDs. We surveyed risk factors for ward, intensive care unit, delivery room, newborn room, operation room, function test room and central supply room at a university hospital in Seoul. It was executed for 2 months as the field study that was composed of simulation, real measurement, work motion assessment and subjective assessment. And the results were analyzed into ergonomics techniques. Works according to the criteria of musculoskeletal burdened work by the Ministry of Labor were scrub in operation room and heart ultrasonic function test. And a lot of works that need attention and management were also detected. So it should be required the education and systematic managements of MSDs for nurses.

Formulation of Human Modeling and Simulation in the Shipbuilding Industry (인체 모델링과 시뮬레이션 기법의 조선산업 적용에 관한 연구)

  • Kim, Dong-Joon;Park, Ju-Yong;Min, Kyong-Cheol;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.114-118
    • /
    • 2006
  • Recently, work-related musculoskeletal disorders(WMSDs) is one of the major issues in the shipbuilding industry. The number of injured workers has rapidly increased and demands for workers compensation, improvement of work condition and environment to prevent WMSDs become larger. To protect and reduce WMSDs in the shipbuilding industry, simulation technique which showed it's ability of increasing the manufacturing productivity will be applied, because simulation technique has the evaluation ability for a worker's danger level of production process by human activity analysis. In our research, we modeled worker's attitude and simulated worker's action. We evaluated the caution level, compared and analyzed the difference point of digital human which made on computer and actual worker's attitude to check feasibility of human modeling and simulation in the shipbuilding industry.

Construction Ergonomic Intervention to Reduce Musculoskeletal Disorders in Aluminum Formworkers

  • Kim, Dae Young;Yi, Hak;Lee, Sang Ryong;Kim, Bubryur;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.465-472
    • /
    • 2022
  • Manual material handling is the one of the leading causes for musculoskeletal disorders (MSDs) and lower back discomfort. According to a study, construction formworkers suffer greater rates of muscular injuries and related illness due to manual activities. However, there is still a paucity of information on MSD, preventive posture issues, and corresponding solutions for construction aluminum formworkers. As a result, MSD and disregard of worker health and safety continue to exist at construction sites. Although preventive measures and strategies have been studied in previous research, we believe it is imperative to shed light on this problem through this study. This study aims to 1) implement a simple and cost-effective elevated bench to reduce MSDs, and 2) determine the rapid upper limbs assessment (RULA) and Ovako working posture analyzing system (OWAS) action catagory of workers in different postures to assess their MSD conditions and obtain an optimal position and posture using the Jack human modeling software and simulation tool. The study findings reveal a considerable reduction in MSD discomfort and which posture is acceptable in post-intervention instances.Thus results provide inexpensive and simple ergonomic interventions with favorable RULA and OWAS ratings that can be applied at construction sites. This study demonstrates workstation ergonomic intervention cases that can aid in understanding the urgency of applying existing research strategies into practice.

  • PDF