• Title/Summary/Keyword: Muscles activation

Search Result 409, Processing Time 0.024 seconds

The changes of rectus abdominis muscle thickness according to the angle during active straight leg raise

  • Lee, Hwang Jae;Shin, Kil Ho;Byun, Sung Mi;Jeong, Hyeon Seo;Hong, Ji Su;Jeong, Su Ji;Lee, Wan Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.2 no.1
    • /
    • pp.44-48
    • /
    • 2013
  • Objective: The purpose of this study was to investigate changes of abdominal muscles thickness according to the angle during the active straight leg raise (ASLR) in young healthy subjects. Design: Cross sectional study. Methods: Twenty-three healthy university students (13 men and 10 women) voluntary participated to the study in S University. The ASLR was performed with the subject lying supine with lower extremities straight on a standard plinth, hands resting on the chest, and elbows on the plinth. When one subject performed ASLR from each angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), compared changes in the thickness of rectus abdominis muscle. Changes in muscle thickness during ASLR test were assessed with ultrasonography. All subjects were to provide enough time of rest after performed ASLR. Rectus abdominis thickness were measured using rehabilitative ultrasound image. Results: Good quality rectus abdominal muscle activation data were recorded during ASLR. The length changes of linea alba showed significantly shorter in between $0^{\circ}$ and $30^{\circ}$ (p<0.05). The thickness of rectus abdominis muscle were significantly different between $0^{\circ}$ and $30^{\circ}$, $0^{\circ}$ and $45^{\circ}$, $0^{\circ}$ and $60^{\circ}$, $0^{\circ}$ and $90^{\circ}$. According to increase of pelvic angle, the thickness of rectus abdominis muscle were more thickening (p<0.05). Conclusions: This result is changes of abdominal muscles thickness according to the angle during the ASLR.

  • PDF

Effects of performing hip abduction and adduction during bridging exercise on trunk and lower extremity muscle activity in healthy individuals

  • Hwang, Joo Young;Ahn, Woo Young;Kim, Hyo Jae;Woo, Je Hyun;Choi, Woo Jin;Park, Jae Wook;Lee, Mi Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • Objective: To investigate the effect of performing three different bridge exercise conditions on the activities of four different muscles using surface electromyography (sEMG) in healthy young adults. Design: Cross-sectional study. Methods: A total of 20 healthy young adults (10 males, 10 females) voluntarily participated in this study. All subjects randomly performed three different bridge conditions as follows: general bridge exercise, isometric hip abduction (IHAB) with a blue Theraband (Hygenic Corp., USA), and isometric hip adduction (IHAD) with a Swiss ball (Hygenic Corp.). The muscle activities of bilateral erector spinae (ES), gluteus maximus (GM), biceps femoris (BF), and external oblique (EO) muscles during the bridge exercises were measured using sEMG. Subjects performed each of the three bridge conditions three times in random order and mean values were obtained. Results: For bilateral ES and BF, there was a significant increase in muscle activity in the IHAD condition compared to the general bridge and IHAB condition (p<0.05). For bilateral GM, there was a significant increase in muscle activity in the IHAB condition compared to the general bridge condition (p<0.05) and there was a significant increase in muscle activity in the IHAB condition compared to IHAD condition (p<0.05). For left EO, a significant increase was observed in the IHAD condition compared to the general bridge condition (p<0.05). Conclusions: ES and BF muscle activity increases were observed with hip adduction and increased GM activity was observed with hip abduction. These findings may be applicable within the clinical field for selective trunk and lower extremity muscle activation and advanced rehabilitation purposes.

Evaluation of Biomechanical Movements and Injury Risk Factors in Weight Lifting (Snatch)

  • Moon, YoungJin
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.369-375
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the possibility of injuries and the types of movement related to damage by body parts, and to prepare for prevention of injuries and development of a training program. Method: For this study, the experiment was conducted according to levels of 60 percentages (ST) and 85 percentages (MA) and 10 subjects from the Korean elite national weightlifting team were included. Furthermore, we analyzed joint moment and muscle activation pattern with three-dimensional video analysis. Ground reaction force and EMG analyses were performed to measure the factors related to injuries and motion. Results: Knee reinjuries such as anterior cruciate ligament damage caused by deterioration of the control ability for the forward movement function of the tibia based on the movement of the biceps femoris when the rectus femoris is activated with the powerful last-pull movement. In particular, athletes with previous or current injuries should perceive a careful contiguity of the ratio of the biceps femoris to the rectus femoris. This shows that athletes can exert five times greater force than the injury threshold in contrast to the inversion moment of the ankle, which is actively performed for a powerful last pull motion and is positively considered in terms of intentional motion. It is activated by excessive adduction and internal rotation moment to avoid excessive abduction and external rotation of the knee at lockout motion. It is an injury risk to muscles and ligaments, causing large adduction moment and internal rotation moment at the knee. Adduction moment in the elbow joint increased to higher than the injury threshold at ST (60% level) in the lockout phase. Hence, all athletes are indicated to be at a high risk of injury of the elbow adductor muscle. Lockout motion is similar to the "high five" posture, and repetitive training in this motion increases the likelihood of injuries because of occurrence of strong internal rotation and adduction of the shoulder. Training volume of lockout motion has to be considered when developing a training program. Conclusion: The important factors related to injury at snatch include B/R rate, muscles to activate the adduction moment and internal rotation moment at the elbow joint in the lockout phase, and muscles to activate the internal rotation moment at the shoulder joint in the lockout phase.

Comparison of Changes in the Thickness of the Abdominal Muscles in Different Standing Positions in Subjects With and Without Chronic Low Back Pain (만성 요통 유무와 자세에 따른 복부근 두께변화 비교)

  • Won, Jong-Im
    • PNF and Movement
    • /
    • v.18 no.3
    • /
    • pp.415-424
    • /
    • 2020
  • Purpose: This study aimed to compare changes in abdominal muscle thickness in different standing postures with a handheld load between subjects with and without chronic low back pain (CLBP). Methods: Twenty subjects with CLBP and 20 controls participated in this study. Ultrasound imaging was used to assess the changes in the thickness of the transverse abdominis (TrA), internal oblique (IO), and external oblique (EO) muscles. Muscle thickness in three different standing postures (standing at rest, standing with loads, standing with lifting loads) was compared with the muscle thickness at rest in the supine position and was expressed as a percentage of change in the thickness of the muscle. Results: While standing with loads, the change in IO muscle thickness in the CLBP patients increased more significantly than in the pain-free controls (p < 0.05). The standing with lifting loads posture showed a significant increase in the change in thickness of the TrA compared with the standing with loads posture (p < 0.05). In addition, the standing with lifting loads posture showed a significant decrease in the change in the thickness of the EO when compared with the standing with loads posture (p < 0.05). Conclusion: The automatic activity of the IO muscle in subjects with CLBP increased more than that of the pain-free controls in the standing with loads posture. These findings suggest that IO muscle function may be altered in those with CLBP while standing with loads. Additionally, TrA the activation level was found to be associated with increased postural demand caused by an elevated center of mass.

Feature Extraction and Evaluation for Classification Models of Injurious Falls Based on Surface Electromyography

  • Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • Background: Only 2% of falls in older adults result in serious injuries (i.e., hip fracture). Therefore, it is important to differentiate injurious versus non-injurious falls, which is critical to develop effective interventions for injury prevention. Objects: The purpose of this study was to a. extract the best features of surface electromyography (sEMG) for classification of injurious falls, and b. find a best model provided by data mining techniques using the extracted features. Methods: Twenty young adults self-initiated falls and landed sideways. Falling trials were consisted of three initial fall directions (forward, sideways, or backward) and three knee positions at the time of hip impact (the impacting-side knee contacted the other knee ("knee together") or the mat ("knee on mat"), or neither the other knee nor the mat was contacted by the impacting-side knee ("free knee"). Falls involved "backward initial fall direction" or "free knee" were defined as "injurious falls" as suggested from previous studies. Nine features were extracted from sEMG signals of four hip muscles during a fall, including integral of absolute value (IAV), Wilson amplitude (WAMP), zero crossing (ZC), number of turns (NT), mean of amplitude (MA), root mean square (RMS), average amplitude change (AAC), difference absolute standard deviation value (DASDV). The decision tree and support vector machine (SVM) were used to classify the injurious falls. Results: For the initial fall direction, accuracy of the best model (SVM with a DASDV) was 48%. For the knee position, accuracy of the best model (SVM with an AAC) was 49%. Furthermore, there was no model that has sensitivity and specificity of 80% or greater. Conclusion: Our results suggest that the classification model built upon the sEMG features of the four hip muscles are not effective to classify injurious falls. Future studies should consider other data mining techniques with different muscles.

Comparison of Lower Extremity Muscle Activity during the Deep Squat Exercise Using Various Tools

  • Park, Jun Hyeon;Lee, Jong Kyung;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.2
    • /
    • pp.63-67
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effect of assistance tools such as gym balls, wedges, and straps on lower extremity muscle activity and the increase in the range of motion made possible by the use of these tools. The subjects were divided into two groups: a group capable of deep-squatting (PS) and the second finding it impossible or having difficulty in performing such squats (IS). Methods: Twenty-three subjects participated in this study. Surface electromyography was used to measure the muscle activation of the rectus femoris (RF), vastus medialis (VM), and tibialis anterior (TA) muscles during deep squats, normal squats (NS), gym ball squats (GS), wedge squats (WS), and strap squats (SS). A motion analysis system was used to measure the range of motion of the knee joint during each of these exercises. Results: There was a significant difference in the RF muscle activity between the possible squat (PS) and the impossible squat (IS) groups in the GS, and there were significant differences in the RF and TA muscle activity between the groups in the WS. Both the PS group and the IS group showed a significant difference in the TA muscle activity depending on the tool used. There were also significant differences in the range of motion of the knee joints between the intervention methods using NS and those using the tools. Conclusion: In both groups, the muscle activity of the TA muscles was lower when GS, WS, and SS were performed compared to NS. In addition, compared to NS, the range of motion of the knee joint increased when the three tools were used. This study shows that the activity of the RF, VM, and TA muscles decreased and the range of motion of the knee joint increased during deep squats for both the PS and IS groups when tools were used.

A Comparison of Change in Thickness for Lower Trapezius Muscle During Lower Trapezius Muscle Isometric Exercise and Reliability of Ultrasound Imaging (하승모근 등척성 운동방법에 따른 근두께 변화량 비교 및 초음파 영상의 신뢰도 연구)

  • Song, Woo-Ri;Kim, Suhn-Yeop;Jang, Hyun-Jeong
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2012
  • The lower trapezius muscle is an important stabilizer and primary mover of the scapula. The potential use of ultrasound imaging to evaluate scapular muscle function warrants investigation. The purpose of this study is to use ultrasound imaging for determining the effectiveness of 4 different isometric exercises for maximally activating the lower trapezius muscles in healthy subjects. Twenty-eight (14 men and 14 women) volunteers were recruited for this study. Thickness measurements of the lower trapezius muscles were recorded during 4 exercises: latissimus pulldown (LP), prone V-raise (PV), prone row (PR), and modified prone cobra (MP). Lower trapezius muscle thickness was measured 3 times by 2 investigators at a point 3 cm lateral to the lateral edge of the T8 spinous process. The order of 4 exercise execution was randomized for each participant. To identify statistical significance, one-way ANOVA with repeated measures was used with the significance level of .05. Intraclass correlation coefficient (ICC) for intra-reliability was .86~.98 and inter-rater reliability .83~.96 for the lower trapezius, respectively (p<.01). Thickness changes in the lower trapezius muscles between the relaxed and contracted states in men were as follows: LP ($7.37{\pm}2.68mm$, 182%), MP ($4.69{\pm}1.74mm$, 167%), PV ($4.52{\pm}1.47mm$, 149%), and PR ($3.84{\pm}1.72mm$, 133%). In women the values were as follows: LP ($4.64{\pm}1.24mm$, 163%), MP ($2.79{\pm}.81mm$, 131%), PV ($2.78{\pm}.85mm$, 129%), and PR ($2.21{\pm}1.26$ mm, 100%). Thickness of the lower trapezius muscles significantly differed between exercises in both the gender (p<.01). The LP was the most effective exercise for increasing the activation of the lower trapezius muscle in both the gender. We recommend performing the LP exercise for strengthening the lower trapezius muscles.

Activation of Lumbar Spinal Neurons by Forelimb Afferent Inputs in Cats (상지구심성 입력에 의한 요수팽대부 척수세포의 활성화)

  • Ku, Ja-Ran;Lee, Ae-Joo;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.409-420
    • /
    • 1989
  • Extracellular recordings were made from the spinal neurons in the lumbar enlargement of 16 cats before and during electrical stimulation of the radial nerve ipsilaterally and contralaterally. Only neurons activated by remote nerve stimulation (RNS) were included in sample. All the cell classes of spinal neurons which received afferents message from the skin and/or muscles were activated by RNS except LT cells. Approximately three quaters of cells activated by RNS had an inhibitory receptive field (RF) on the ipsilateral hindlimb and two thirds of RNS-activated neurons showed spontaneous activity. The most of these RNS-activated cells seemed to be in deep dorsal horn and in ventral horn as well. Stimulation of contralateral radial nerve produced activation of spinal neurons almost same degree as by ipsilateral nerve stimulation. The optimal stimulation parameters of radial nerve for activation of spinal cells were 5Hz-0.5 msec-2V while threshold stimulus for activation was approximately 0.18 V. Following close intra-arterial injection of $K^+$ ion excitability of RNS-activated neuron was increased in 4 of 8 cells whereas it was decreased in 2 of 8 cells. The results indicate that there are some spinal neurons in the lumbar enlargement of cats that can be activated by forelimb afferent $(A{\beta}\;&\;A{\delta})$ inputs.

  • PDF

Effect of lower limb's support type on pectoralis major and erector spinae muscle activity during flat bench press (플랫 벤치 프레스 동작 시 하지의 지지유형이 대흉근과 척추기립근의 근 활성에 미치는 영향)

  • Lee, Sengu-Young;Ryu, Jong-Wook;Kim, Jai-Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.940-947
    • /
    • 2018
  • The purpose of this study was to obtain data to support applied motions of bench press and to provide basic data for the efficient execution of the exercise by analyzing muscular activation through measuring electromyogram of pectoralis major and erector spinae when flat bench pressing with feet on the ground versus feet on the bench. For this study, 4 amateur bodybuilders and 2 health trainers were chosen as subjects. Surface electrodes were attached on the measuring muscles; pectoralis major and erector spinae. Motion phases were defined for the flat bench press and each subject, with a 10RM load, performed a set with feet on the ground and another set with feet on the bench. Data was analyzed in SPSS 20.0 and the following results were obtained. The placement of the feet did not affect the muscular activation of the pectoralis major during the flat bench press. however, the muscular activation of the erector spinae was different between the two positions.

Electromyographic features of upper body during wheelchair cycle ramps ascent for disabled with spinal cord injury (휠체어 사이클 경사로 주행 시 척수손상 장애인의 상체 근전도 특성 분석)

  • Kim, S.B.;Ko, C.Y.;Kang, S.J.;Choi, H.J.;Rue, J.C.;Mun, M.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • The aim of this study was to investigate difference of the muscle activation patterns of the upper body during wheelchair cycle ramps ascent of different slopes for disabled with spinal cord injury. Three subjects who is disabled with spinal cord injury participated in this study. Surface electromyography (EMG) data (reaction time [RT], onset-offset time, and peak value of muscle activation) were collected biceps, triceps, upper trapezius, anterior deltoid, latissimus dorsi, and upper rectus abdominal muscles during wheelchair cycle ramps ascent ($0^{\circ}$, $3^{\circ}$, and $6^{\circ}$). For latissimus dorsi muscle, RT and peak value of muscle activation was were increased and offset time was delayed as the slope increased (p < 0.05). These results indicate that wheelchair cycle ramps ascent might cause excessive overuse of latissimus dorsi muscle.

  • PDF