• Title/Summary/Keyword: Muscles activation

Search Result 406, Processing Time 0.029 seconds

Effect of Trans Cranial Directed Current Stimulus on Lower Extremity Muscle Activation and Walking Capacity for Hemiparalysis Patients (편마비 환자에게 적용된 경두개직류자극이 하지 근 활성도 및 보행능력에 미치는 영향)

  • Lee, Yeon-Seop
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2022
  • Purpose: The purpose of this study is to investigate the effect of non-invasive transcranial direct current stimulation (tDCS) on muscle activity, including 10 m WT, TUG, and BBS, in hemiplegic stroke patients. Methods: This study was conducted on 42 inpatients diagnosed with hemiplegia due to stroke at hospital B in Daejeon for more than 6 months. Walking training was conducted for six weeks, five times a week for 30 minutes, with a general walking group (14 people), tDCS walking group (14 people), and tDCS (sham) walking group (14 people). Results: As a result of the study, the change in the muscle activity before and after tDCS intervention was significantly increased in the tibialis anterior muscle in the CG group. In the EG group, the erector spine (lumbar), rectus femoris, and tibialis anterior muscles significantly increased. In the SEG group, significant increases were observed in the rectus femoris and tibialis anterior muscles. Significant differences were found in the rectus femoris and tibialis anterior muscles in the comparison between groups after intervention according to tDCS application. Also, 10 m WT, TUG, and BBS were significantly increased in the CG, EG, and SEG groups after intervention, and there were significant differences in 10 m WT, TUG, and BBS in comparison between groups after intervention according to tDCS application. Conclusion: As a result, tDCS is an effective in improving the walking ability of stroke patients, and in particular, it effectively increases the muscle activity of the rectus femoris and tibialis anterior muscles, which act directly on walking, and also improves the speed and stability of walking. It is considered being an effective method to increase the gait of stroke patients by combining it with the existing gait training.

Comparison of Muscle Thickness and Changing Ratio for Cervical Flexor Muscles During the Craniocervical Flexion Test Between Subjects With and Without Forward Head Posture

  • Lee, Jae-hyun;Hwang, Ui-jae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.180-186
    • /
    • 2022
  • Background: The craniocervical flexion test (CCFT) was developed for the activation and endurance of deep cervical flexors. However, the muscle thickness and muscle thickness changing ratio of the sternocleidomastoid (SCM) and deep cervical flexor (DCF) muscles in subjects with and without forward head posture (FHP) have not been reported. Objects: To determine the difference in thickness of the SCM and DCF muscles and the difference in the muscle thickness changing ratio between SCM, DCF, and DCF/SCM 20 mmHg and DCF/SCM 30 mmHg between subjects with and without FHP. Methods: Thirty subjects with and without FHP were enrolled. The muscle thickness of the SCM and DCF was measured when maintained at a baseline pressure of 20 mmHg and a maximum pressure of 30 mmHg using a pressure biofeedback unit during the CCFT. Ultrasonography was used to capture images of SCM and DCF muscle thickness during the CCFT, which was calculated using the picture archiving and communication system (PACS). Results: We observed a significant difference within the pressure main effect between SCM and DCF at a baseline pressure of 20 mmHg and a maximum pressure of 30 mmHg (p < 0.05). However, there was no significant difference in the muscle thickness and muscle thickness changing ratio for SCM and DCF during CCFT between subjects with and without FHP. Conclusion: There was no significant difference in the muscle thickness recruitment pattern during CCFT in posture changes between subjects with and without FHP.

The Effect of Abdominal Drawing-in Maneuver Aapplied to Sitting Position in Healthy Adult on Grip Power (정상 성인에서 앉은 자세에 적용한 복부 드로우인 기법이 파악력에 미치는 영향)

  • Kim, Chang-Sook
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.475-482
    • /
    • 2020
  • The abdominal drawing-in maneuver(ADIM), which is performed to strengthen the stabilization muscles of the lumbar, is an exercise method that selectively contracts the TrA and IO by increasing intra-abdominal pressure. In order to check the effect of ADIM in sitting position, which is the most frequently used posture in everyday life, on how to grip power, ADIM was conducted in a sitting position for 30 healthy adults, and then the state was not performed. In each, the grip power was measured to determine how ADIM performed in the sitting position had an effect on grip power and which muscles had the most influence. The muscles mobilized for the electromyography(EMG) measurement were RA, EO, IO/TrA, and ES, which were the most activation lumbar stabilization muscles when ADIM was applied. As a result of the study, the activity on muscles of the lumbar stabilization was significantly increased and the grip power of the muscles was significantly increased than the ADIM in the sitting position. By comparing the measured difference value of each muscle, it was found that any muscle had a greater effect on grip power, but no muscle showed a significant correlation. It is thought that the increase of intra-abdominal pressure did not affect the grip power of a specific muscle. Therefore, if ADIM is performed in a sitting position that is frequently used in everyday life through this study, it will be more effective in increasing the grip power and lumbar stabilization.

NITRIC OXIDE (NO) DIRECTLY ACTIVATES CALCIUM-ACTIVATED POTASSIUM CHANNELS FROM RAT BRAIN RECONSTITUTED INTO PLANAR LIPID BILAYER

  • Shin, Jung-Hoon;Suh, Chang-Kook;Sungkwon Chung;Uhm, Dae-Yong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.35-35
    • /
    • 1996
  • Nitric oxide (NO) has been reported to have many roles in vivo ranging from the neurotransmitter in brain to the relaxant in smooth muscles. Recently, using inside-out patches, Bolotina et al. (1) showed that relaxing effect of NO is aortic smooth muscle is through direct activation of Ca2+-activated K+ channels (maxi-K), resulting in hyperpolarization. (omitted)

  • PDF

The Biofeedback Scapular Stabilization Exercise in Stroke Patients Effect of Muscle Activity and Function of the Upper Extremity

  • Yang, Dae-Jung;Uhm, Yo-Han;Kim, Je-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.5
    • /
    • pp.325-331
    • /
    • 2015
  • Purpose: This study attempts to understand the effect of stabilization exercise of biofeedback scapular on muscle activity and functional evaluation of the upper extremity in stroke patients. Methods: Patients were divided into two groups; a biofeedback scapular stabilization exercise group comprised of 8 patients and a task-oriented training group including another 8 patients, and 30-minute exercise was performed 5 times a week for 8 weeks. Electromyogram was used to measure muscular activity of lower trapezius, deltoid middle, and serratus anterior. Fugl-Meyer Assessment and Manual Function Test were used to evaluate functions of the muscles mentioned. Results: Significant difference was observed in the comparison group before and after exercise in muscular activity of lower trapezius, deltoid middle, and serratus anterior, Fugl-Meyer Assessment, and Manual Function Test. Conclusion: Therefore, we could see that biofeedback scapular stabilization exercise is more effective than task-oriented training in facilitating muscle activation and functional capacity of upper limb.

Factors Influencing Satellite Cell Activity during Skeletal Muscle Development in Avian and Mammalian Species

  • Nierobisz, Lidia S;Mozdziak, Paul E
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.456-464
    • /
    • 2008
  • Avian and mammalian skeletal muscles exhibit a remarkable ability to adjust to physiological stressors induced by growth, exercise, injury and disease. The process of muscle recovery following injury and myonuclear accretion during growth is attributed to a small population of satellite cells located beneath the basal lamina of the myofiber. Several metabolic factors contribute to the activation of satellite cells in response to stress mediated by illness, injury or aging. This review will describe the regenerative properties of satellite cells, the processes of satellite cell activation and highlight the potential role of satellite cells in skeletal muscle growth, tissue engineering and meat production.

Effects of Fructus Piperis Longi Extracts on Glucose Uptake in Adipocyte (필발 추출물의 포도당 흡수능에 대한 효과)

  • Kim, Mi Seong;Kwon, Kang Beom;Song, Je Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.59-62
    • /
    • 2014
  • Glucose uptake plays a pivotal role in maintaining whole body glucose homeostasis in adipocytes and skeletal muscles. In the present study we have shown that Fructus Piperis Longi Extracts (FPLE) can stimulate glucose uptake in OP9 adipocytes. The increasing effects of FPLE on glucose uptake were inhibited by compound C pretreatment, which means that the glucose uptake effects by FPLE were carried out by AMP-activated protein kinase (AMPK) activation. Further studies revealed that FPLE stimulated glucose transport occurs through a mechanism involving extracellular signal-regulated kinase (ERK1/2) activation.

Derivation and verification of scenarios for underground logistics rolltainer (지하물류 운송용기 평가 시나리오 도출 및 검증)

  • U Ri Chae;Joo Uk Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.76-89
    • /
    • 2024
  • This study investigates the impact of standardized underground logistics conainers on lower body muscle activation during warehouse tasks, comparing conventional roll containers(A type) with newly developed ones(B type). Through a detailed experimental setup involving electromyography(EMG) and tensiomyography(TMG), muscle activities of the lower limbs were quantitatively analyzed during loading unloading and transporting tasks. Results indicated no significant difference in muscle activation patters between the two rolltainer types, suggesting that the dimensions of these containers do not critically affect the muscular strain and workload. Furthermore, the TMG analysis revealed that muscle contraction velocity(Vc) increased in certain muscles when using the B-type rolltainer, indicating a potential for more efficient muscle engagement without increasing fatigue. This research underscores the importance of ergonomic considerations in the design of logistics equipment and suggests that further studies should focus on optimizing the interaction between human operators and logistical systems to enhance safety and efficiency in warehouse operations.

The Effects of Squatting Exercise with Gym Ball and Wall on Lower Extremity Muscles Activation (짐볼과 벽면을 이용한 스쿼트 운동이 하지근 활성도에 미치는 영향)

  • Oh, Tae-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.4
    • /
    • pp.647-653
    • /
    • 2013
  • PURPOSE: The purpose of this study was to compare the lower extremities muscle activation between squatting exercise with gym ball and wall for improving muscle strengthening in lower extremities. METHODS: Participants were 21 university students (males 10, females 11) who didn't have any problem with orthopedic surgery. Participants performed squatting exercise with gym ball and wall. Squatting exercise with gym ball were performed using by gym ball behind back, and the gym ball were fixed in back and wall. We asked participants to push back the gym ball slightly to prevent fall of ball. Wall squatting exercise, we ask participants to contact their back in wall slightly in order to prevent trunk flexion during performed squatting exercise. Each squatting exercise had performed until knee joint were flexed at 60 degree, and maintained five seconds. We collected data from E.M.G of Biceps femoris, Gastrocnemius, Vastus medialis and lateralis, Tibialis anterior of lower extremity in isometric phase of knee joint angle 60 degree of each squatting exercise. We analysed data using by ANOVA and independent t-test of SPSS PC ver.20.0 in order to compare the muscle activation between squatting exercise with gym ball and wall. RESULT: All of lower extremities muscle activation showed more higher value in squatting exercise with gym ball than squatting exercise with wall, especially there was significantly difference of muscle activation in vastus medialis, tibialis anterior between squatting exercise with gymball and with wall. CONCLUSION: On comprehensively considering the results of the present study, we suggested that squatting exercise with gym ball was more effective method improving lower extremity muscle strengthening.

Effects of Different Chair Type and Pelvic Position on Abdominal Muscle and Back Extensor Activation During Lower Extremity Exercise (하지 운동 시 의자 종류와 골반 자세가 복근과 요추신전근의 활성도에 미치는 영향)

  • Choi, In-Yong;Cynn, Heon-Seock;Kim, Tack-Hoon;Roh, Jung-Suk
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.3
    • /
    • pp.15-25
    • /
    • 2006
  • The purpose of this study was to investigate effects of different chair type (with backrest chair and without backrest chair) and pelvic position (anterior pelvic tilting and posterior pelvic tilting) on three abdominal muscles (upper rectus abdominis, external oblique, internal oblique) and back extensor activation during lower extremity exercise. The four different conditions during bilateral knee extension exercise were: (1) leaning on backrest chair with anterior pelvic tilting, (2) leaning on backrest chair with posterior pelvic tilting, (3) anterior pelvic tilting without backrest chair, and (4) posterior pelvic tilting without backrest chair. Fifteen healthy male subjects with no history of neuromusculoskeletal disease voluntarily participated in this study. Electromyography (EMG) was used to collect muscle activation data, and muscle activation data was expressed as a percentage of maximal voluntary isometric contraction (%MVIC). One-way repeated analysis of variance (ANOVA) was used to determine the statistical significance, and Bonferroni comparison was used as a post hoc test. The results of this study were the following: (1) Erector spinae activation was significantly lower in posterior pelvic tilting without backrest compared with that in leaning on backrest chair with anterior pelvic tilting. (2) Upper rectus abdominis activation was significantly lower than erector spinae in all four different chair type and pelvic tilting conditions.

  • PDF