• Title/Summary/Keyword: Muscle chain

Search Result 380, Processing Time 0.026 seconds

Effects on Goat Meat Extracts on α-Glucosidase Inhibitory Activity, Expression of Bcl-2-Associated X (BAX), p53, and p21 in Cell Line and Expression of Atrogin-1, Muscle Atrophy F-Box (MAFbx), Muscle RING-Finger Protein-1 (MuRF-1), and Myosin Heavy Chain-7 (MYH-7) in C2C12 Myoblsts

  • Joohyun Kang;Soyeon Kim;Yewon Lee;Jei Oh;Yohan Yoon
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.359-373
    • /
    • 2023
  • This study examined the α-glucosidase inhibitory, and apoptosis- and anti-muscular-related factors of goat meat extracts from forelegs, hind legs, loin, and ribs. The goat meat extracts were evaluated for their α-glucosidase inhibitory activity. The gene and protein expression levels of Bcl-2-associated X (bax), p53, and p21 were examined by reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting in AGS and HT-29 cells. The expression levels of Atrogin-1 and MHC1b were examined by RT-PCR in C2C12 myoblasts, and the expression levels of Atrogin-1, muscle atrophy F-box (MAFbx), muscle RING-finger protein-1 (MuRF-1), and myosin heavy chain-7 were investigated by immunoblotting. α-Glucosidase inhibitory activity was higher in ethanol extract than in hydrous and hot water extracts. BAX and p53 expression levels were higher (p<0.05) in AGS cells treated with goat meat extract than those of cells treated with no goat meat extract. In HT-29 cells, the protein expression levels of BAX, p53, and p21 were higher (p<0.05) in the cells treated with goat meat extract than those of cells not treated with goat meat extract. In dexamethasone-treated C2C12 cells, goat meat extract treatment lower (p<0.05) the expression of Atrogin-1 and lower (p<0.05) the expression of MAFbx and MuRF-1. The results of the present study indicate that goat meat extracts have α-glucosidase inhibitory activity in vitro. In addition, apoptosis was induced in AGS cells and HT-29 cells treated with goat meat extract, and anti-muscular atrophy activity was also observed in C2C12 cells treated with goat meat extract.

Influences of Squid Ink Added to Low-Salted Squid Jeot-gal on Its Proteolytic Characteristics (오징어 먹즙 첨가가 저 식염 오징어 젓갈의 단백질분해 특성에 미치는 영향)

  • Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 2013
  • Squid ink was added to the salt fermented squid by 2% or 4% of concentration and ripened at $10^{\circ}C$ for 8 weeks and at $20^{\circ}C$ for 32days. The effects of the squid ink on the amino nitrogen and muscle protein of salt fermented squid were investigated. The results are as follows; As the salt concentration was decreased and the fermentation temperature raised, amino nitrogen in the salt fermented squid without addition of the squid ink was significantly increased to the latter stage of the ripening and hence fermentations were enhanced. From the change of the protein in the squid muscle in the experiments, dissolution of the myosin heavy chain took place conspicuously in the early stage of the ripening while actin was rarely changed which resulted in the strong resistance to protease. The amino nitrogen content in the salt fermented squid addition of the squid ink has increased to the latter part of the ripening but the range was smaller than no treatment groups. The protein in squid muscle, especially the myosin heavy chain was remarkably dissolved in the middle of the ripening whereas the squid ink added groups of high salt concentration and low temperature showed the tendency of slow proteolysis.

The Effects of Trunk and Lower Extremity Muscle Activation on Straight Leg Rising by Various Ankle Joint Rotation Angle

  • Lee, Sang-Yeol;Kim, Mi-Jin;An, Bo-Gyeong;Hwang, Na-Yeon;Kim, Sung-Jin;Han, Min-Hyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.249-253
    • /
    • 2014
  • PURPOSE: This study intends to examine the effects of change of anatomical position of the ankle joint in open kinematic chain, an appropriate position for selective muscle training, on vastus lateralis obliques, rectus femoris, vastus medilais obliques, and rectus abdominalis muscle activation and to present an effective method of muscle training for patients and normal people. METHODS: The participants of this study were Korean healthy adult in their 20s. The 8 channel surface electromyography was used to measure muscle activation while the subjects raised their legs under each condition. Under each condition, while the subjects raised the leg to hip joint flexion at $60^{\circ}$ along the arch. RESULTS: The analysis result of muscle activation by each section and position during leg rising. There were significant differences. CONCLUSION: For independent strengthening of each muscle, muscle activation was measured according to leg raising angles and the result differed according to each section and position. If this study result is applied to muscle training for patients who need selective muscle training, more effective muscle strengthening will be made possible.

Muscle Force Potentiation During Constant Electrical Stimulation - Dependence on Pulse-Amplitude and Pulse-Duration of Electrical Stimulation (일정 전기자극하의 근력 상승 - 전기 자극 파형의 펄스 진폭과 펄스폭에 대한 의존성)

  • Kim, Ji-Won;Kwang, Min-Young;Eom, Gwang-Moon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.10
    • /
    • pp.458-463
    • /
    • 2006
  • The purpose of this work is to investigate the fundamental properties of the gradual muscle force potentiation. We investigated the dependence of force potentiation on both the pulse-amplitude and the pulse-duration with different ramp-up time. The experimental results showed that the force increment ratio (FIR) during constant electrical stimulation decreased with pulse-amplitude and also with pulse-duration. The FIR was greater with short ramp-up time in both the pulse-amplitude and pulse-width modulation. The feasible mechanism might be that the myosin light chain phosphorylation induces the force potentiation and it occurs only in the fast type muscle fibers which are recruited first. These observations indicate that muscle potentiation must be understood well for the accurate control of muscle force.

Comparison of Biochemical Characteristics of Myofibrillar Protein from Fresh Water Fish and Sea Water Fish (담수어와 해수어의 근원섬유단백질의 특성 비교)

  • 신완철;송재철;홍상필;김영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.292-298
    • /
    • 1999
  • Myofibril and actomyosin were prepared from red muscle and white muscle of fresh water fish and sea water fish, and their biochemical characteristics and SDS PAGE patterns of myofibril were compared. SDS PAGE analysis showed that electrophoretic patterns of myofibril were similar be tween white muscle and red muscle, while difference of 30kDa component of myofibril was detected between fresh water fish and sea water fish. When myofibril were treated with trypsin, difference in hydrolysis of heavy chain was observed between white muscle and red muscle. In activities of Ca ATPase, Mg ATPase, EDTA ATPase and ATPase activity pH curve, myofibrillar protein from fresh water fish showed higher specific activity than those from sea water fish.

  • PDF

Simvastatin Induces Avian Muscle Protein Degradation through Muscle Atrophy Signaling (Simvastatin이 메추리 근육 세포에 미치는 영향)

  • JeongWoong, Park;Yu-Seung, Choi;Sarang, Choi;Sang In, Lee;Sangsu, Shin
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.265-272
    • /
    • 2022
  • Many studies on poultry have been conducted in the poultry industry to improve their important economic traits, such as egg production, meat quality, and carcass yield. Environmental changes affect the poultry's economic traits, including muscle growth. The purpose of this study is to investigate the mechanisms by which simvastatin causes muscle injury in quail muscle cells. Following treatment with various doses of simvastatin, LD50 in the quail myoblast cells was determined using a cell viability test; cell death was caused by apoptosis and/or necrosis. Thereafter, the expression patterns of the atrophy marker genes were examined via quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that the transcriptional levels of the muscle atrophy marker genes (Atrogin-1, TRIM63) and the upstream genes in their signaling cascade were increased by simvastatin treatment. This indicated that simvastatin induced myogenic cell death and muscle injury via protein degradation through muscle atrophy signaling. Further studies should focus on identifying the mechanism by which simvastatin induces the protein degradation signaling pathway in quail muscle..

Effects of Packaging Method on Quality of Chilled Plaice Muscle (포장방법이 냉장어육의 품질에 미치는 영향)

  • 신완철;송재철;최석영;김미숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1292-1296
    • /
    • 2003
  • The purpose of this study is to investigate the changes of physico-chemical properties of chilled plaice muscle, stored at 4$^{\circ}C$ for 0 ∼ 21 days, with different packaging methods (vacuum packaged with PVDC and aerobic packaged with HDPE). pH value in aerobic packaged plaice muscle (APPM) decreased from 6.3 to 6.09 at first 2 day storage, and then increased gradually during storage time. Although pH pattern of vacuum packaged plaice muscle (VPPM) was similar to that of APPM, change of pH value during storage time was slower and lower than APPM. VBN value in aerobic packaged one increased during storage time. Especially it increased significantly after 7 days of storage. While VBN value in VPPM increased only a little to 14 days. TBA value showed significant difference between APPM and VPPM. WHC of APPM was higher than that of VPPM after 7 days of storage. In electrophoretic pattern of myofibril of APPM stored for 14 days hydrolysis of heavy chain and tropomyosin was observed. However, in VPPM, some hydrolysis occurred only in heavy chain. SDS-PAGE analysis showed that hydrolysis of VPPM occurs later than that of APPM.

Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts (C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할)

  • Dal-Ah KIM;Kyoung Hye KONG;Hyun-Jeong CHO;Mi-Ran LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.184-194
    • /
    • 2023
  • In this study, we investigated whether p-anisaldehyde (PAA), the main component of essential oils derived from anise seeds, influences the differentiation of mouse C2C12 myoblasts. Cells were induced to differentiate over 5 days using a differentiation medium with or without PAA (50 or 200 mg/mL). Myotube length and diameter were measured, and the expressions of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) were assessed by quantitative real-time polymerase chain reaction. Additionally, protein kinase B (Akt) phosphorylation was monitored by western blotting. PAA significantly induced the formation of smaller and thinner myotubes and reduced myogenic marker expression. Furthermore, PAA increased the expressions of atrogin-1 and MuRF-1 and simultaneously reduced Akt phosphorylation. Our findings indicate that PAA inhibits the myogenic differentiation of C2C12 cells by reducing the phosphorylation and activation of Akt.

Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress

  • Jeong-Woong, Park;Kyoung Hwan, Kim;Sujung, Kim;Jae-rung, So;Byung-Wook, Cho;Ki-Duk, Song
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.800-811
    • /
    • 2022
  • The integration of metabolomics and transcriptomics may elucidate the correlation between the genotypic and phenotypic patterns in organisms. In equine physiology, various metabolite levels vary during exercise, which may be correlated with a modified gene expression pattern of related genes. Integrated metabolomic and transcriptomic studies in horses have not been conducted to date. The objective of this study was to detect the effect of moderate exercise on the metabolomic and transcriptomic levels in horses. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we analyzed the concentrations of metabolites in muscle and plasma; we also determined the gene expression patterns of branched chain (alpha) keto acid dehydrogenase kinase complex (BCKDK), which encodes the key regulatory enzymes in branched-chain amino acid (BCAA) catabolism, in two breeds of horses, Thoroughbred and Jeju, at different time intervals. The concentrations of metabolites in muscle and plasma were measured by 1H NMR (nuclear magnetic resonance) spectroscopy, and the relative metabolite levels before and after exercise in the two samples were compared. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA), and variable important plots and t-test were used for basic statistical analysis. The stress-induced expression patterns of BCKDK genes in horse muscle-derived cells were examined using quantitative reverse transcription polymerase chain reaction (qPCR) to gain insight into the role of transcript in response to exercise stress. In this study, we found higher concentrations of aspartate, leucine, isoleucine, and lysine in the skeletal muscle of Jeju horses than in Thoroughbred horses. In plasma, compared with Jeju horses, Thoroughbred horses had higher levels of alanine and methionine before exercise; whereas post-exercise, lysine levels were increased. Gene expression analysis revealed a decreased expression level of BCKDK in the post-exercise period in Thoroughbred horses.