• Title/Summary/Keyword: Muscle cell

Search Result 1,148, Processing Time 0.027 seconds

Increased Expression of the ${\alpha}_2$ Isoform of (Na,K)ATPase in the Differentiated Murine Muscle Cell Line BC3H-1 (BC3H-1 분화세포에서의 (Na,K)ATPase ${\alpha}_2$ isoform의 표현증대)

  • Lee, Kyung-Lim
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.734-738
    • /
    • 1996
  • The development of the alpha2 isoform of (Na,K)ATPase which is high affinity ouabain receptors was studied in the differentiating nonfusing muscle cell line BC3H-1. T he differentiation process of BC3H-1 cell line was confirmed by 2-dexy-D-[$^3$H] glucose uptake experiment and the quantity of the expression of ${\alpha}_2$ isoform was measured using a whole cell [$^3$H] ouabain-binding assay. Undifferentiated growing BC3H-1 cells, myoblasts, exhibited low levels of insulin-stimulated glucose uptake and [$^3$H] ouabain-binding sites. In contrast, differentiated BC3H-1 cells, myocytes, had a 5.6-fold increase in insulin-stimulated glucose uptake and 5-fold increase in [$^3$H] ouabain-binding sites. Scatchard analysis showed that myocytes developed more [$^3$H] ouabain-binding sites than myoblasts vath a dissociation constant (kd) of 6${\times}10^{-8}$M and capacity of 6.l${\times}10^{-5}$ sites/cell. Therefore. it seems that myoblasts express low levels of ${\alpha}_2$ subunit and probably the majority of ${\alpha}_1$ subunit, whereas myocytes express high levels of ${\alpha}_2$ isoform. The results indicate that the expression of ${\alpha}_2$ isoform is developmentally regulated during differentiation and that BC3H-1 culture system provides an excellent model for the study of differentiation and mechanism of (Na,K)ATPase action in muscle which requires electrical excitability.

  • PDF

Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

  • Kim, Sin;Park, Mi Kyung;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.431-438
    • /
    • 2015
  • In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T ($T_{reg}$) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and $T_{reg}$ cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/$TIRAP^{-/-}$ MEF cells, and quite substantially decreased in $TRIF^{-/-}$ MEF cells. In contrast, IL-10 and $TGF-{\beta}$ expression levels were not elevated in MyD88/$TIRAP^{-/-}$ MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and $T_{reg}$ cell mediated immune responses, although additional data are needed to convincingly prove this observation.

Cell Versus Chemokine Therapy Effects on Cell Mobilization to Chronically Dysfunctional Urinary Sphincters of Nonhuman Primates

  • Williams, J. Koudy;Mariya, Silmi;Suparto, Irma;Lankford, Shannon S.;Andersson, Karl-Erik
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.260-267
    • /
    • 2018
  • Purpose: A major question remaining in approaches to tissue engineering and organ replacement is the role of native mobilized native cells in the regeneration process of damaged tissues and organs. The goal of this study was to compare the cell mobilizing effects of the chemokine CXCL12 and cell therapy on the urinary sphincter of nonhuman primates (NHP) with chronic intrinsic urinary sphincter dysfunction. Methods: Either autologous lenti-M-cherry labeled skeletal muscle precursor cells (skMPCs) or CXCL12 were injected directly into the sphincter complex of female NHPs with or without surgery-induced chronic urinary sphincter dysfunction (n=4/treatment condition). All monkeys had partial bone marrow transplantation with autologous lenti-green fluorescent protein (GFP) bone marrow cells prior to treatment. Labeled cells were identified, characterized and quantified using computer-assisted immunohistochemistry 6 months posttreatment. Results: GFP-labeled bone marrow cells (BMCs) were identified in the bone marrow and both BMCs and skMPCs were found in the urinary sphincter at 6-month postinjection. BMCs and skMPCs were present in the striated muscle, smooth muscle, and lamina propria/urothelium of the sphincter tissue. Sphincter injury increased the sphincter content of BMCs when analyzed 6-month postinjection. CXCL12 treatment, but not skMPCs, increased the number of BMCs in all layers of the sphincter complex (P<0.05). CXCL12 only modestly (P=0.15) increased the number of skMPCs in the sphincter complex. Conclusions: This dual labeling methodology now provides us with the tools to measure the relative number of locally injected cells versus bone marrow transplanted cells. The results of this study suggest that CXCL12 promotes mobilization of cells to the sphincter, which may contribute more to sphincter regeneration than injected cells.

Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model

  • Zhang, Zhidong;Zou, Gangqiang;Chen, Xiaosan;Lu, Wei;Liu, Jianyang;Zhai, Shuiting;Qiao, Gang
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.218-227
    • /
    • 2019
  • This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient ($ApoE^{-/-}$) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.

Mechanosensitive Modulation of Receptor-Mediated Crossbridge Activation and Cytoskeletal Organization in Airway Smooth Muscle

  • Hai, Chi-Ming
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2000
  • Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for control1ing airway resistance in airway diseases.

  • PDF

Review of the muscle plasticity (근육의 가소성에 대한 고찰)

  • Baek Su-Jeong;Kim Dong-Hyun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.100-110
    • /
    • 2003
  • The purpose of this article is to understand of the muscle adaptation based on myosin heavy chain. Especially, skeletal muscle dadptation in related to aging, unloading, training will discussed. MHC expression is highly plastic in muscles of adult mammals in accordance with the environmental conditions. These changes is called muscle plasticity. The plasticity is the atility of muscle cell to alter either the quantity of protein or the type of protein. MHC is both an important structural and regulatory protein comprising the contractile apparatus.

  • PDF

Expression of Tumor Necrosis Factor (TNF)-z${\alpha}$ from Cells Undergoing Death by FADD

  • Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.57-60
    • /
    • 2002
  • Apoptosis of vascular smooth muscle cell is observed in the vascular diseases such as atherosclerosis and restenosis. The death of vascular smooth muscle cells can be induced by cytokines and activation of Fas-pathways. It is widely accepted that apoptosis occurs without inflammation. There are, however, reports that apoptosis is not silent. Vascular smooth muscle cells dying by Fas-pathway secreted inflammatory cytokines including monocyte chemoattractant protein-1. This study have investigated whether apoptosis is associated with potent inflammatory cytokine tumor tumor necrosis factor (TNF)-${\alpha}$. The cells which undergo apoptosis by expressing FADD in the absence of tetracycline expressed and secreted TNF-${\alpha}$. When the level of TNF-${\alpha}$ transcript was investigated, dying smooth muscle cells exhibited transcriptional activation of TNF-${\alpha}$. The data indicate that dying vascular smooth muscle cells contribute to inflammation by expressing inflammatory cytokines. The present study suggests that apoptosis could not be silent in certain pathological situations.

  • PDF

Concomitant variations of the tibialis anterior, and extensor hallucis longus, and extensor hallucis brevis muscles

  • Jenilkumar Patel;Graham Dupont;Joho Katsuta;Joe Iwanaga;Lukasz Olewnik;R. Shane Tubbs
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.137-140
    • /
    • 2023
  • Tibialis anterior (TA) muscle originates from the lateral surface of tibia and its tendon attaches to the medial cuneiform and base of the first metatarsal. The TA muscle is responsible for both dorsiflexion and inversion of the foot. We present a case of bilateral TA muscle variations that diverge slightly from the current classification systems of this muscle. Recognizing variations such as these may be important for anatomists, surgeons, podiatrists, and physicians. Following routine dissection, an accessory tendon of the TA muscle was found on both sides. Accessory tendons of the extensor hallucis longus and extensor hallucis brevis joined to form a common tendon on both sides. We believe that this unique case will help further the classification systems for the tendons of the TA and also be informative for clinical anatomists as well as physicians treating patients with pathology in this region.

4-Aminopyridine Inhibits the Large-conductance $Ca^{2+}-activated$ $K^+$ Channel $(BK_{Ca})$ Currents in Rabbit Pulmonary Arterial Smooth Muscle Cells

  • Bae, Young-Min;Kim, Ae-Ran;Kim, Bo-Kyung;Cho, Sung-Il;Kim, Jung-Hwan;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2003
  • Ion channel inhibitors are widely used for pharmacological discrimination between the different channel types as well as for determination of their functional role. In the present study, we tested the hypothesis that 4-aminopyridine (4-AP) could affect the large conductance $Ca^{2+}$-activated $K^+$ channel ($BK_{Ca}$) currents using perforated-patch or cell-attached configuration of patch-clamp technique in the rabbit pulmonary arterial smooth muscle. Application of 4-AP reversibly inhibited the spontaneous transient outward currents (STOCs). The reversal potential and the sensitivity to charybdotoxin indicated that the STOCs were due to the activation of $BK_{Ca}$. The $BK_{Ca}$ currents were recorded in single channel resolution under the cell-attached mode of patch-clamp technique for minimal perturbation of intracellular environment. Application of 4-AP also inhibited the single $BK_{Ca}$ currents reversibly and dose-dependently. The membrane potential of rabbit pulmonary arterial smooth muscle cells showed spontaneous transient hyperpolarizations (STHPs), presumably due to the STOC activities, which was also inhibited by 4-AP. These results suggest that 4-AP can inhibit $BK_{Ca}$ currentsin the intact rabbit vascular smooth muscle. The use of 4-AP as a selective voltage-dependent $K^+$ (KV) channel blocker in vascular smooth muscle, therefore, must be reevaluated.

Biological Study on the Increment of Survival Rate during Early Life Cycle in the Rockfish, Sebastes schlegeli(Teleostei: Scorpaenidae) - III. Ultrastructure of the Adult Digestive Tract (조피볼락, Sebastes schlegeli의 초기 생활사 동안 생존율 향상을 위한 생물학적 연구 - III. 성체 소화관의 미세구조)

  • Chin, Pyung;Lee, Jung-Sick;Shin, Yun-Kyung;Kim, Hak-Gyoon
    • Korean Journal of Ichthyology
    • /
    • v.10 no.1
    • /
    • pp.115-127
    • /
    • 1998
  • The digestive tract of the rockfish, Sebastes schlegeli composed of pharynx, esophagus, stomach, intestine, anus and ten or eleven pyloric caeca. Pyloric caeca is blind sac of banana shape, and that is originated from pyloric portion of the stomach. The relative length of gut(RLG), that is length of digestive tract to standard length, is about 1.56(n=10). Esophageal muscularis consists of thin outer layer of longitudinal muscle and thick inner layer of circular muscle. Mucosal epithelium consists of columnar epithelium with short microvilli and contains numerous mucous secretory cell. The mucosal folds of the stomach are regular, and the muscularis consists of longitudinal, oblique and circular muscle layer. The chief cell of the gastric gland have a tubular mitochondria, endoplasmic reticula and numerous secretory granules in electron-dense. However, parietal cell contains small mitochondria, endoplasmic reticula and vacuoles in low electron density. Mucosal epithelium of the pyloric caeca and intestine composed of columnar epithelium, goblet cell, rodlet cell and dark cell. Columnar absorptive cell in the pyloric caeca and intestine contains well developed mitochondria, endoplasmic reticula, vesiculated granules in high electron density, pinocytotic vesicles and multivesicular body. Rodlet cell have a well developed cytoplasmic capsule and the endoplasmic reticula in the cytoplasm. Dark cell showing a high electron density in the cytoplasm and contains well developed mitochondria. Columnar epithelium of the intestine have a well developed intercellular junction and the microvilli which contains actin filament originated from the cytoplasm. Mucosal epithelium of the intestine have a longer microvilli and more abundant goblet cells than in the pyloric caeca.

  • PDF