• Title/Summary/Keyword: Muscle activity (EMG)

Search Result 718, Processing Time 0.029 seconds

The kinematic analysis of the ankle joint and EMG analysis of the lower limbs muscle for the different walking speed (보행 속도 변화에 따른 발목 관절의 운동학적 분석과 하퇴 근육의 근전도 분석)

  • Moon, Gon-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.177-195
    • /
    • 2005
  • The purpose of this study was to analyze the kinematic variables of ankle joints and EMG signal of the lower limbs muscle activity for the different walking speed. The subjects were 6 males of twenties. It was classified into three different walking speed-0.75m/s, 1.25m/s, 1.75m/s. The walking performances were filmed by high speed video camera and EMG signal was gained by ME3000P8 Measurement Unit. Tibialis anterior(TA), Gastrocnemius medial head(GM), Gastrocnemius lateral head(GL), Ssoleus(SO) were selected for the dorsiflexion and plantarflexion of the ankle joint. The result of this study were as follows: 1. In the gait cycle, The time parameters for the phases were showed significant difference without the terminal stance phase and terminal swing phase for the different walking speed. 2. The angle of ankle joint was no significant difference for each time point and MDF, MPF but increasing walking speed the angle had the increasing pattern slightly. 3. The angular velocity of ankle joint was showed the significant difference for LHC, RTO, RKC, LHU, MPF and MDF point along the walking speed. 4. TA was showed about 2-3 times muscle activity at the 1.75m/s than 1.25m/s in some phases. And it was showed the similar muscle activity between the 0.75m/s and 1.25m/s but, showed a little much muscle activity in the 0.75m/s. GM was showed about 2-3 times muscle activity in the 1.75m/s than 1.25m/s, and even much muscle activity at the 0.75m/s than 1.25m/s in some phases. GL was showed increasing pattern of muscle activity specially in the initial swing phase as the walking speed increased. SO was showed about 3 times muscle activity in the 1.75m/s than 1.25m/s during the plantarflexion of ankle joint. It was showed the similar muscle activity between the 0.75m/s and 1.25m/s but, showed a little much muscle activity in the 1.25m/s.

Leg Crossing-Induced Asymmetrical Trunk Muscle Activity During Seated Computer Work

  • Chung, Yean-Gil;Kim, Yong-Wook;Woen, Jong-Hyuck;Yi, Chung-Hwi;Jeon, Rye-Sean;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.15 no.4
    • /
    • pp.80-86
    • /
    • 2008
  • Cross-legged sitting postures are commonly assumed during computer work. The purpose of this study was to determine the effects of leg crossing on trunk muscle activity while typing at a computer. Trunk muscle activity was measured in three 8 different sitting postures, in random order. These posture were: normal sitting with a straight trunk and both feet on the floor (NS), upper leg crossing (ULC), and ankle on knee (AOK). The right leg was crossed onto the left leg in both cross-legged postures. Twenty able-bodied male volunteers participated in this study. Subjects typed on a computer keyboard for one minute. Surface electromyography (EMG) was used to record bilateral muscle activity in the external oblique (EO). internal oblique (IO), and rectus abdominis (RA). The EMG activity of each muscle in the NS posture was used as a reference (100% EMG activity) in relation to the two cross-legged postures. Muscle activity in the right EO. right IO, and left IO was significantly lower in the ULC posture than in the NS posture. In contrast, muscle activity in the right RA was significantly higher in the ULC posture than in the NS posture. Muscle activity in the tight RA was significantly higher in the AOK posture, as compared to the NS posture, whereas activity in the left IO was significantly lower in the AOK posture, as compared to the NS posture. The right-left muscle activity ratios in the EO and IO showed significantly different patterns in the cross-legged postures, suggesting that asymmetrical right-left oblique muscle activity had occurred.

  • PDF

Analysis Characteristic the Using Surface EMG of Scaling Working of the Dental Hygienist with Upper Body Musculoskeletal Pain (상반신의 근육뼈대계 통증이 치과위생사의 스케일링 작업에 미치는 특성에 대한 표면 근전도 분석)

  • Nam, Kun-Woo;Ha, Mi-Sook
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • Purpose : The current research examines the muscle activity that happens during scaling practice subject to 20 dental hygienic students with musculoskeletal pain and then propose a basic data according to the working attitude of the Dental Hygienist. Method : The Nordic-style questionnaire is used to define experimental group with musculoskeletal pain and control group. During the scaling the surface EMG device is used to measure the muscle activity of experimental and control group. Study design : The surface EMG is measure RMS(root mean square) of suboccipital muscle, biceps brachii, upper trapezius, and brachioradialis muscle activity. Results : In the experimental group, the RMS of upper trapezius and brachioradialis is increased during scaling practice(p<0.05), but the control group's RMS is not changed(p>0.05). Conclusion : Musculoskeletal pain may contribute to increase muscle activity of neck & arm during scaling practice. In the future we think there is a need to raise the office efficiency by subjecting to dental hyginiest that are in the clinics and performing experiments.

  • PDF

Effects of the Additional Scapular Posterior Tilt Movement on Selective Muscle Activation of the Lower Trapezius during Prone Shoulder Extension

  • Kim, Sooyong;Kang, Minhyeok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2308-2313
    • /
    • 2021
  • Background: Although the scapular posterior tilt movement could facilitate the lower trapezius (LT) muscle activity, no study identified the effects of the scapular posterior tilt movement on the selective activation of the LT muscle during prone shoulder extension. Objectives: To examine the influences of additional scapular posterior tilt on electromyography (EMG) of the upper trapezius (UT) and the LT muscles during prone shoulder extension. Design: Cross-sectional study. Methods: There were 15 asymptomatic male participants in this study who performed prone shoulder extension with and without scapular posterior tilt movements. For the scapular posterior tilt movements, participants performed visual biofeedback training for scapular movement using motion sensor. During the exercises, the EMG activity of the UT and LT was recorded using surface EMG system. Results: The EMG activity of the LT significantly increased during prone shoulder extension with scapular posterior tilt compared to that of general prone shoulder extension, whereas that of the UT was not significantly different between the two exercises. Moreover, scapular posterior tilt application significantly decreased UT/LT muscle activity ratio. Conclusion: Scapular posterior tilt movement may be emphasized during exercise when facilitating LT muscle activation.

EMG Activities of Trunk and Lower Extremity Muscles Induced by Different Intensity of Whole Body Vibration During Bridging Exercise

  • Kim, Tack-Hoon;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2009
  • The purpose of this study was to investigate the trunk and lower extremity muscle activity induced by three different intensity conditions (intensity 1, 3, 5) of whole body vibration (WBV) during bridging exercise. Surface electromyography (EMG) was used to measure trunk and lower extremity muscles activity. Eleven healthy young subjects (6 males, 5 females) were recruited from university students. The collected EMG data were normalized using reference contraction (no vibration during bridging) and expressed as a percentage of reference voluntary contraction. To analyze the differences in EMG data, the repeated one-way analysis of variance was used. A Bonferroni's correction was used for multiple comparisons. The study showed that EMG activity of the rectus abdominis, external oblique, internal oblique, erector spinae and rectus femoris muscles was not significantly different among three intensity conditions of WBV during bridging exercise (p>.05). However, there were significantly increased EMG activity of the medial hamstring muscle (p=.001) and medial gastrocnemius muscle (p=.027) in the intensity 3 condition compared with the intensity 1 condition. This result can be interpreted that vibration was absorbed through the distal muscles, plantar flexor and knee flexor.

  • PDF

The Utility of Measuring Paravertebral Muscle Function with 3D-NEWTON (3차원 뉴튼(3D-NEWTON)을 이용한 척추 주위근 기능 평가의 유용성)

  • Han, Nami;Kim, Hyun Dong;Hwang, Ji Sun;Bae, Jung-Hyuk
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.16-22
    • /
    • 2013
  • Purpose: This study evaluated the validity of measuring paravertebral muscle function with 3D-NEWTON (Hanmed, Korea) by assessing the correlation between Biodex (Biodex, USA) and surface electromyography (EMG). Methods: Nineteen healthy adults participated. The function of their paravertebral muscle was measured in three ways. Maximum endurance time was measured in seconds when 3D-NEWTON was inclined forward for assessing extensor function, and inclined backward for assessing flexor function. Using surface EMG, maximum muscle activity was obtained from the eractor spinae and rectus abdominis during the 3D-NEWTON measurement. Maximum muscle activity was the mean activity from 10 seconds when the root mean squared firing data was highest. Through Biodex the peak torques of the extensor and flexor were measured during isometric exercises. The Spearman correlation coefficiencts from 3D-NEWTON, surface EMG, and Biodex were calculated. Results: The data from surface EMG and Biodex were statistically correlated when measured for flexor function, but less so for extensor function. In the case of 3D-NEWTON, the correlation coefficient with Biodex was 0.50 (p=0.05), while the coefficient with surface EMG was 0.53 (p=0.02) when measured for extensor function. Similarly, the correlation coefficienct with Biodex was 0.60 (p=0.01), while the surface EMG was 0.51 (p=0.03) for flexor function. Conclusion: 3D-NEWTON was a useful method for measuring paravertebral muscle function and can give helpful information for treating people with diseases associated with the lumbar spine.

Arm Lifting Exercises for Lower Trapezius Muscle Activation

  • Kang, Minhyeok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.4
    • /
    • pp.1868-1872
    • /
    • 2019
  • Background: Lower trapezius muscle function is important for the prevention and treatment of shoulder injuries. However, scapular posterior tilt movement has been overlooked in lower trapezius strengthening exercise programs. Objective: To examine the effects of prone arm lifting with scapular posterior tilt (PALSPT) on trapezius muscles. Design: Crossover study Methods: 17 healthy males were recruited for participation in this study. Participants performed backward rocking diagonal arm lifting (BRDAL) and PALSPT. To train participants in scapular posterior tilt movements for PALSPT, visual biofeedback of scapular movements was provided using a motion sensor. Electromyography (EMG) activities of the middle and lower trapezius were recorded using a surface EMG system. Differences in middle and lower trapezius muscle activity between BRDAL and PALSPT exercises were analyzed. Results: Lower trapezius muscle activity was significantly greater during PALSPT than during BRDAL (p=.006). Although greater EMG activity was observed in the middle trapezius during PALSPT than during BRDAL, this difference was not significant (p=.055). Conclusions: The results of the present study indicate that scapular posterior tilt movements must be considered in lower trapezius muscle strengthening programs.

The Immediate Effects of Kinesio Taping on the Maximal Power and Muscle Activity of Erector Spinae in Normal Subjects

  • Lee, Moon-Hwan;Kim, Seong-Yeol
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.70-73
    • /
    • 2012
  • The purpose of this study was to evaluate the effects of Kinesio taping(KT) on the maximal power and muscle activity of erector spinae. 30 male subjects were allocated in this study and randomly divided into experimental and control groups. All subjects were measured for maximal power of trunk extensors and muscle activities of iliocostalis lumborum, longissimus, and multifidus between pre and post experiment. Maximal power was calculated using a dynamometer(Power Track II, JTECH medical, USA), and muscle activities were calculated using a surface EMG(MP150 BIOPAC System Inc. CA. USA). Maximal power of trunk extensor showed no significant difference between pre and post intervention in both groups(p>0.05). Muscle activity of iliocostalis lumborum, longissimus, and multifidus showed no significant difference between pre and post intervention(p>0.05). Finally, there was no significant difference between Experimental and control group in maximal power and muscle activity of trunk extensor. These study results suggested that KT did not affect increase or decrease in maximal power and muscle activities of trunk extensor.

Effect of Kinesio Tape for Fascia on Trunk Muscle Activity during Plank

  • Kim, Ji Young;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.5
    • /
    • pp.290-294
    • /
    • 2020
  • Purpose: Many studies have reported increased muscle activities in treatments using kinesio tape. However, most studies have focused on only muscles, so the effects of kinesio tape on structures other than the muscles are unknown. The purpose of this study is to explore the effect of kinesio tape for the fascia on trunk muscle activity during plank. Methods: Eighteen healthy participants took part in this study. The participants were asked to perform the plank in two conditions: on stable surface and unstable surface. Two kinesio tapes were attached along the spiral line introduced in the anatomy train. EMG was measured in each condition. EMG data were collected before and after attaching kinesio tape in each condition. Repeated analysis of variance (repeated ANOVA) was conducted to compare EMG activities levels between conditions. Results: EMG activities levels of trunk muscles, especially rectus abdominis and erector spinae activities were significantly increased during the plank with KT on both stable and unstable surfaces. Conclusion: KT applying on the fascia of targeted muscle increases the muscle activity. Therefore, we can also focus on the fascia to increase muscle activities not only on muscles.

Activities of Upper Limb Muscles Related to the Direction of Elastic Tape Application in Healthy Adults: A Randomized Trial of Parallel-Aligned Versus Cross-Aligned Tape Application

  • Oh, Duck-Won;Chon, Seung-Chul
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.9-15
    • /
    • 2013
  • The purpose of this study was to evaluate the differences in electromyographic (EMG) activities of upper limb muscles between cross- and parallel-aligned taping and to compare the effects of these 2 taping methods in healthy adults. Thirty subjects, who volunteered for this study, were tested under 3 taping conditions in random order: (1) no taping, (2) cross-aligned taping, and (3) parallel-aligned taping. EMG activities of the biceps brachii, triceps brachii, flexor carpi ulnaris, and extensor carpi radialis muscles were measured. All muscles showed significant differences in EMG activity among the 3 conditions (p<.05). In the post hoc test, biceps brachii and triceps brachii muscles showed significant differences in EMG activity between the no taping and the cross-aligned taping conditions and between the no taping and the parallel-aligned taping conditions. Additionally, the EMG activities of the flexor carpi radialis and extensor carpi radialis muscles appeared to be significantly different between the no taping and parallel-aligned taping conditions. These findings demonstrate that taping may be helpful for decreasing muscle activity, regardless of the direction of tape application. This study provides useful information to future researchers regarding the effects of taping on muscle activity.