• Title/Summary/Keyword: Murinae

Search Result 3, Processing Time 0.025 seconds

A Phylogenetic Study of Korean Rodents (Muridae, Sciuridae) Based on Mitochondrial and Nuclear DNA

  • Jung, Gi-La;Lee, Seo-Jin;Kim, Chuel-Kyu;Lee, Hang;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • v.26 no.2
    • /
    • pp.99-104
    • /
    • 2010
  • The subfamily Murinae is a very controversial group concerning their phylogenetic relationship. Previous studies could not resolve phylogeny among four genera Apodemus, Micromys, Mus and Rattus of the Muridae. In the present study, eight rodent species resident in South Korea were collected and phylogenetically analyzed based on sequence data of five mitochondrial and nuclear DNA regions: 12S rRNA, cytochrome b gene (cyt b), cytochrome oxidase II (COII), control region of mitochondrial DNA, and a thyroglobulin (Tg) of nuclear DNA. According to the phylogeny of the concatenated data, M. musculus separated early in Murinae (ML 100%; BA 1.00 pp) and the genus Rattus grouped with the harvest mouse, M. minutes; these were separated from the genus Apodemus with relatively strong support (ML 74%; BA 0.76 pp). The Siberian chipmunk population was also examined using the five genes to obtain better resolution. The phylogeny for Korean rodents determined using the 12S rRNA, cyt b, COII and control regions discriminated the Siberian chipmunk populations from Korea, Russia, and China.

Ultrastructure of Acinar Secretory Granules of Submandibular and Parotid Salivary Gland in the Korean Striped Field Mouse, Apodemus agrarius (Rodentia, Murinae)

  • Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.8-12
    • /
    • 2017
  • The ultrastructures of the secretory acinar granules of submandibular and parotid salivary gland were examined in the Korean striped field mouse, Apodemus agraius. The acini of the submandibular salivary gland had serous and mucous acinar cells filled with numerous secretory granules. The serous acinar granules had uniformly fine dense contents and were round typed with a definite boundary between the granules. The mucous acinar granules were relatively coarse, with moderate density, and clustered together as a result of the indistinct boundaries between the granules. The acini of the parotid salivary glands contained only serous cells filled with numerous round-typed serous acinar granules. Serous acinar granules had uniformed dense matrix and definite boundaries. The ultrastructures without substructure in a matrix of serous and mucous acinar granules in the submandibular and parotid salivary glands of A. agraius were similar to those of species of Rodentia but different from those of Soricidae in Korea with a characteristic substructure in a matrix. This ultrastructure and charateristics in secretory acinar granules provide fundamental data for molecular comparisions of genetic relationships and are one of the key methods for classifying A. agraius.

Distribution of Aerobic Intestinal Microorganisms in the Feces of the Striped Field Mouse (Apodemus agrarius coreae) in Jeju (제주지역 야생 등줄쥐(Apodemus agrarius coreae) 분변의 호기성 장내 미생물 분포)

  • Jiro KIM;Yun-Hee OH;Moo-Sang CHONG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This study examined the fecal samples of striped field mice (Apodemus agrarius coreae) captured in Jeju Special Self-Governing Province. Fecal samples, including the colon and other intestinal organs, were collected and subjected to aerobic culture to investigate the distribution of intestinal microorganisms. Gram staining of the aerobic cultured bacterial colonies from 36 fecal samples revealed the predominant presence of gram-negative bacilli in all samples. Among the 36 samples, gram-negative bacilli were identified in 36 strains (100%), gram-positive cocci in 21 strains (58.3%), and gram-positive bacilli in 15 strains (41.7%), while no gram-negative cocci were observed. The gram-negative bacilli cultured from the 36 samples were identified using the Vitek 2 system, and all were determined to be Escherichia coli (E. coli) strains. In addition, one sample was concurrently identified with E. coli and Enterobacter cloacae strains. The antimicrobial susceptibility testing for the identified E. coli strains did not include all antibiotics, but one strain exhibited intermediate resistance to cefoxitin. No pathogenic bacteria were present in the fecal samples of the scrub typhus-infected rodents, which are vectors for chigger-borne diseases affecting humans and animals.