• 제목/요약/키워드: Multivariate statistics analysis

검색결과 324건 처리시간 0.041초

Comparison of Variability in SCA Maps Using the Procrustes Analysis

  • Yun, Woo-Jung;Choi, Yong-Seok
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.163-165
    • /
    • 2003
  • Some multivariate analyses provide configurations for variables or objects in low dimensional space because we can see easily their relation. In particular, in simple correspondence analysis(SCA), we can obtain the various configurations which are called SCA Maps based on the algebraic algorithms. Moreover, it often occur the variability among them. Therefore, in this study, we will give a comparison of variability of SCA maps using the procrustes analysis which is a technique of comparing configurations in multidimensional scaling.

  • PDF

포트폴리오 VaR 측정을 위한 변동성 모형의 성과분석 (Performance Analysis of Volatility Models for Estimating Portfolio Value at Risk)

  • 여성칠;이조청
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.541-559
    • /
    • 2015
  • VaR는 금융위험을 측정하고 관리하기위한 중요한 도구로 현재 널리 사용되고 있다. 특히 금융자산 수익률의 변동성에 적합한 모형을 찾는 것은 VaR의 정확한 측정을 위해 중요한 과제이다. 본 연구에서는 한국의 코스피, 중국의 항셍, 일본의 니케이지수들로 구성된 포트폴리오의 VaR를 측정하기 위한 변동성모형으로 다양한 일변량모형들과 다변량모형들을 함께 고려하여 그 성과를 비교하였다. 사후검증을 통해 전체적으로 일변량모형들보다는 다변량모형들이 VaR의 측정에 더 적합한 것으로 보여 졌으며 특히 DCC와 ADCC모형이 더욱 우수한 것으로 나타났다.

A Study on High Breakdown Discriminant Analysis : A Monte Carlo Simulation

  • Moon Sup;Young Joo;Youngjo
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.225-232
    • /
    • 2000
  • The linear and quadratic discrimination functions based on normal theory are widely used to classify an observation to one of predefined groups. But the discriminant functions are sensitive to outliers. A high breakdown procedure to estimate location and scatter of multivariate data is the minimum volume ellipsoid or MVE estimator To obtain high breakdown classifiers outliers in multivariate data are detected by using the robust Mahalanobis distance based on MVE estimators and the weighted estimators are inserted in the functions for classification. A samll-sample MOnte Carlo study shows that the high breakdown robust procedures perform better than the classical classifiers.

  • PDF

Selection probability of multivariate regularization to identify pleiotropic variants in genetic association studies

  • Kim, Kipoong;Sun, Hokeun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권5호
    • /
    • pp.535-546
    • /
    • 2020
  • In genetic association studies, pleiotropy is a phenomenon where a variant or a genetic region affects multiple traits or diseases. There have been many studies identifying cross-phenotype genetic associations. But, most of statistical approaches for detection of pleiotropy are based on individual tests where a single variant association with multiple traits is tested one at a time. These approaches fail to account for relations among correlated variants. Recently, multivariate regularization methods have been proposed to detect pleiotropy in analysis of high-dimensional genomic data. However, they suffer a problem of tuning parameter selection, which often results in either too many false positives or too small true positives. In this article, we applied selection probability to multivariate regularization methods in order to identify pleiotropic variants associated with multiple phenotypes. Selection probability was applied to individual elastic-net, unified elastic-net and multi-response elastic-net regularization methods. In simulation studies, selection performance of three multivariate regularization methods was evaluated when the total number of phenotypes, the number of phenotypes associated with a variant, and correlations among phenotypes are different. We also applied the regularization methods to a wild bean dataset consisting of 169,028 variants and 17 phenotypes.

Bayesian Analysis of a New Skewed Multivariate Probit for Correlated Binary Response Data

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제30권4호
    • /
    • pp.613-635
    • /
    • 2001
  • This paper proposes a skewed multivariate probit model for analyzing a correlated binary response data with covariates. The proposed model is formulated by introducing an asymmetric link based upon a skewed multivariate normal distribution. The model connected to the asymmetric multivariate link, allows for flexible modeling of the correlation structure among binary responses and straightforward interpretation of the parameters. However, complex likelihood function of the model prevents us from fitting and analyzing the model analytically. Simulation-based Bayesian inference methodologies are provided to overcome the problem. We examine the suggested methods through two data sets in order to demonstrate their performances.

  • PDF

THE USE OF MULTIVARIATE STATISTICS TO EVALUATE THE RESPONSE OF RICE STRAW VARIETIES TO CHEMICAL TREATMENT

  • Vadiveloo, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권1호
    • /
    • pp.83-89
    • /
    • 1996
  • Multivariate statistical procedures were used to analyse data on the chemical composition and in vitro digestibility of four varienties of rice straw after treatment with 4% NaOH solution, 4% urea solution or distilled water (control) for 48 hours. For each treatment, stepwise discriminant analysis identified the variables which maximized differences between varieties and the eigenvectors from principal component analysis quantified the contribution of these criterion variables to varietal differences. The overall response of varieties to chemical treatment was demonstrated qualitatively, by cluster analysis, and quantitatively, from the magnitude of the principal component scores. The analysis revealed that the urea and control treatments elicited the same response whereas NaOH had the greatest effect on the poorest straw variety. Similar analyses conducted on the botanical fractions of the varieties showed that the relative response of the inflorescence, stem, leaf blade and leaf sheath fractions was not altered by chemical treatment.

다변수 통계법을 이용한 조리식품의 관능특성 연구 (Application of Multivariate Statistics for Characterization of Sensory Properties in Pre-cooked Foods)

  • 윤희남
    • 한국식품과학회지
    • /
    • 제23권6호
    • /
    • pp.711-716
    • /
    • 1991
  • 조리 식품의 관능특성을 평가하고, 다변수 통계법으로 서로의 상관관계를 조사 하였다. 시료 식품을 각각 특징지을 수 있는 12개의 관능특성을 단계적 차별 분석에 의해 선정하였으며, 요민분석에 의해 도출된 3개의 요인으로 12개의 관능 특성이 갖는 변이의 61.9%를 설명할 수 있었다. 요인 I은 질적 관능성질과 관련이 있고, 요인 II는 양적인 관능특성과 높은 상관관계를 나타내었다. 시료 식품과 관능특성을 동시에 주 성분 좌표상에 표시함으로서 서로간의 상관관계 설정이 용이하였고, average linkage 및 Ward's method을 이용한 집락분석에서 9개의 조리식품은 관능특성의 유사성에서 크게 3개의 집락으로 분류되었다.

  • PDF

Fast classification of fibres for concrete based on multivariate statistics

  • Zarzycki, Pawel K.;Katzer, Jacek;Domski, Jacek
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.23-29
    • /
    • 2017
  • In this study engineered steel fibres used as reinforcement for concrete were characterized by number of key mechanical and spatial parameters, which are easy to measure and quantify. Such commonly used parameters as length, diameter, fibre intrinsic efficiency ratio (FIER), hook geometry, tensile strength and ductility were considered. Effective classification of various fibres was demonstrated using simple multivariate computations involving principal component analysis (PCA). Contrary to univariate data mining approach, the proposed analysis can be efficiently adapted for fast, robust and direct classification of engineered steel fibres. The results have revealed that in case of particular spatial/geometrical conditions of steel fibres investigated the FIER parameter can be efficiently replaced by a simple aspect ratio. There is also a need of finding new parameters describing properties of steel fibre more precisely.

주성분분석에 의한 결손 자료의 영향값 검출에 대한 연구 (Detecting Influential Observations in Multivariate Statistical Analysis of Incomplete Data by PCA)

  • 김현정;문승호;신재경
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.383-392
    • /
    • 2000
  • 1970년대 후반부터 영향력이 있는 관측값을 검출하기 위해서 회귀분석을 포함한 다양한 다변량 해석법에서의 영향분석 및 감도분석에 대한 연구가 진행되어 왔다. 결손 값이 포함된 불완전한 자료에 관해서도 이러한 연구가 필요하다. 이와 관련하여 Kim et al.(1998)등은 평균벡터와 분산공분산행렬에 대한 최우추정값에 초점을 두고 불완전한 자료에 대한 다변량 해석법에서의 감도분석에 관한 방법적 연구를 다루었다. Kim et al.(1998)에서는 Cook’s D 통계량을 이용하였으나, 본 논문에서는 결손값이 있는 다변량 자료에 대해서 주성분을 이용하여 영향력이 있는 관측값을 검출하는 방법에 대해서 살펴보았다. 이 때, 결손값은 EM알고리즘에 의해 대치하여 PCA 통계량을 유도하였다.

  • PDF