• Title/Summary/Keyword: Multivariate curve resolution

Search Result 5, Processing Time 0.026 seconds

Absorbtion Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

  • Ajloo, Davood;Ghadamgahi, Maryam;Shaheri, Freshte;Zarei, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1440-1448
    • /
    • 2014
  • Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 ${\mu}M$ in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and $65^{\circ}C$ and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.

Self-Modeling Curve Resolution Analysis of On-line Near Infrared Spectra Measured during the Melt-Extrusion Transesterification of Ethylene/Vinylacetate Copolymer

  • Sasic, Slobodan;Kita, Yasuo;Furukawa, Tsuyoshi;Watari, Masahiro;Siesler, Heinz W.;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1284-1284
    • /
    • 2001
  • The transesterification of molten ethylene/vinylacetate (EVA) copolymers by octanol as a reagent and sodium methoxide as a catalyst in an extruder has been monitored by on-line near infrared (NIR) spectroscopy. A total of 60 NIR spectra were acquired for 37 minutes with the last spectrum recorded 31 minutes after the addition of octanol and catalyst was stopped. The experimental spectra show strong baseline fluctuations which are corrected for by multiplicative scatter correction (MSC). The chemometric methods of orthogonal projection approach (OPA) and multivariate curve resolution (MCR) were used to resolve the spectra and to derive concentration profiles of the species. The detailed analysis reveals the absence of completely pure variables that leads to small errors in the calculation of pure spectra. The initial estimation of a concentration that is necessary as an input parameter for MCR also presents a non-trivial task. We obtained results that were not ideal but applicable for practical concentration control. They enable a fast monitoring of the process in real-time and resolve the spectra of the EVA copolymer and the ethylene/vinyl alcohol (EVAL) copolymer to be very close to the reference spectra. The chemometric methods used and the decomposed spectra are discussed in detail.

  • PDF

Reviews in Infrared Spectroscopy and Computational Chemistry to Reveal Rhizospheric Interactions among Organic Acids, Oxyanions and Metal oxides: Fundamental Principles and Spectrum Processing (유기산, 산화음이온 및 금속 산화물 간의 근권 내 상호작용 연구를 위한 계산화학과 적외선 분광학에 관한 총설: 기본적인 원리와 스펙트럼 처리)

  • Han, Junho;Ro, Hee-Myong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.426-439
    • /
    • 2017
  • This review summarizes advantage and limitation in infrared spectroscopy and computational chemistry to understand rhizospheric interaction among organic acids, oxyanions and metal oxides. Since organic acids and metal oxides determine dynamics of oxyanions in the soil environment, knowledge of fundamental mechanisms is a prerequisite for understanding the interactions at soil-water interface. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) is a powerful tool to measure the interfacial reactions. However, the ATR-FTIR measurements are abstruse, because the optical characteristics for measurements are variable depending on the experimental setup. In addition, spectral overlapping is a primary obstacle to the analysis of the interfacial reaction; thus, it is essential to detect and to deconvolute bands for signal interpretation. In this review, we expained the fundamental principle for spectrum processing, and four band identification methods, such as derivative spectroscopy, two-dimension correlation spectroscopy, multivariate curve resolution, and computational chemistry with example of aqueous phosphate speciation. As a result, spectrum processing and computational chemistry improved interpretation and spectral deconvolution of overlapped spectra in relatively simple systems, but it was still unsatisfactory for the problems in more complexed system like nature. Nevertheless, we believed that our challenge would contribute practically to develop adequate analytical procedure, signal processing and protocols that could help to improve interpretation and to understand the interfacial interactions of oxyanions in natural systems.

Raman spectroscopy of eutectic melting between boride granule and stainless steel for sodium-cooled fast reactors

  • Hirofumi Fukai;Masahiro Furuya;Hidemasa Yamano
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.902-907
    • /
    • 2023
  • To understand the eutectic reaction mechanism and the relocation behavior of the core debris is indispensable for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). This paper addresses reaction products and their distribution of the eutectic melting/solidifying reaction of boron carbide (B4C) and stainless-steel (SS). The influence of the existence of carbon on the B4C-SS eutectic reaction was investigated by comparing the iron boride (FeB)-SS reaction by Raman spectroscopy with Multivariate Curve Resolution (MCR) analysis. The scanning electron microscopy with dispersive X-ray spectrometer was also used to investigate the elemental information of the pure metals such as Cr, Ni, and Fe. In the B4C-SS samples, a new layer was formed between B4C/SS interface, and the layer was confirmed that the formed layer corresponded to amorphous carbon (graphite) or FeB or Fe2B. In contrast, a new layer was not clearly formed between FeB and SS interface in the FeB-SS samples. All samples observed the Cr-rich domain and Fe and Ni-rich domain after the reaction. These domains might be formed during the solidifying process.

Pre-operative Predictive Factors for Intra-operative Pathological Lymph Node Metastasis in Rectal Cancers

  • Gao, Chun;Li, Jing-Tao;Fang, Long;Wen, Si-Wei;Zhang, Lei;Zhao, Hong-Chuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6293-6299
    • /
    • 2013
  • Background: A number of clinicopathologic factors have been found to be associated with pathological lymph node metastasis (pLNM) in rectal cancer; however, most of them can only be identified by expensive high resolution imaging or obtained after surgical treatment. Just like the Child-Turcotte-Pugh (CTP) and the model for end-stage liver disease (MELD) scores which have been widely used in clinical practice, our study was designed to assess the pre-operative factors which could be obtained easily to predict intra-operative pLNM in rectal cancer. Methods: A cohort of 469 patients who were treated at our hospital in the period from January 2003 to June 2011, and with a pathologically hospital discharge diagnosis of rectal cancer, were included. Clinical, laboratory and pathologic parameters were analyzed. A multivariate unconditional logistic regression model, areas under the curve (AUC), the Kaplan-Meier method (log-rank test) and the Cox regression model were used. Results: Of the 469 patients, 231 were diagnosed with pLNM (49.3%). Four variables were associated with pLNM by multivariate logistic analysis, age<60 yr (OR=1.819; 95% CI, 1.231-2.687; P=0.003), presence of abdominal pain or discomfort (OR=1.637; 95% CI, 1.052-2.547; P=0.029), absence of allergic history (OR=1.879; 95% CI, 1.041-3.392; P=0.036), and direct $bilirubin{\geq}2.60{\mu}mol/L$ (OR=1.540; 95% CI, 1.054-2.250; P=0.026). The combination of all 4 variables had the highest sensitivity (98.7%) for diagnostic performance. In addition, age<60 yr and direct $bilirubin{\geq}2.60{\mu}mol/L$ were found to be associated with prognosis. Conclusion: Age, abdominal pain or discomfort, allergic history and direct bilirubin were associated with pLNM, which may be helpful for preoperative selection.