한국의 자연실업률에 대한 기존 연구들은 대부분 한 가지의 추정방법에 의존하고 있어 연구 간에 상이하게 나타나는 추정결과를 평가할 근거가 없는 상황이다. 따라서 본고에서는 이를 감안하여 순수 시계열방법, 축약형 모형을 이용한 방법, 구조모형을 이용한 방법 등 다양한 추정방법을 검토하여 추정방법 간 상대적인 장단점을 비교하고 이를 기반으로 한국의 자연실업률을 추정하고자 하였다. 또한 본 논문에서는 추정결과의 신뢰구간을 몬테카를로 적분(Monte Carlo integration)방법을 이용하여 추정함으로써 추정결과의 정확성에 대한 평가 근거를 제시하였다. 축약형 모형의 하나인 다변수 비관측인자모형이 여타 추정방법에 비해 상대적으로 장점을 지니고 있는 것으로 평가되었으나 추정결과가 모형설정오류에 민감하다는 점을 고려하여 모형설정에 세심한 주의를 기울일 필요가 제기되었으며, 순수 시계열방법이나 구조 벡터자기회귀모형도 나름대로의 장점이 있으므로 특정방법을 이용한 결과에 의존하기보다는 여러 추정방법에 의한 추정결과에서 공통적으로 발견되는 부분에 기반을 두어 자연실업률을 추론하는 것이 바람직하다고 사료된다. 추정방법에 따라 다소 차이가 있지만, 한국의 자연실업률은 1979~87년 동안 평균 3.7~4.0% 수준에서 1988~97년 기간 동안 평균 2.6~3.2% 수준으로 하락하였으나, 외환위기를 거치며 4.0~5.3% 수준까지 상승하였다가 이후 하락하는 추세를 지속하고 있는 것으로 나타났다. 또한 대부분의 추정결과에서 최근에 실제실업률이 자연실업률에 근접해 있으나 실업률 갭이 상승하고 있는 것으로 나타나 최근 비교적 높은 수준에 머무르고 있는 실업률이 외환위기 이후 자연실업률의 상승이라는 구조적 변화와 경기침체라는 경기순환적 요인에 함께 영향 받고 있을 가능성을 시사하였다.
Food adulteration is a serious consumer fraud and a matter of concern to food processors and regulatory agencies. A range of analytical methods have been investigated to facilitate the detection of adulterated or mis-labelled foods & food ingredients but most of these require sophisticated equipment, highly-qualified staff and are time-consuming. Regulatory authorities and the food industry require a screening technique which will facilitate fast and relatively inexpensive monitoring of food products with a high level of accuracy. Near infrared spectroscopy has been investigated for its potential in a number of authenticity issues including meat speciation (McElhinney, Downey & Fearn (1999) JNIRS, 7(3), 145-154; Downey, McElhinney & Fearn (2000). Appl. Spectrosc. 54(6), 894-899). This report describes further analysis of these spectral sets using a hierarchical approach and binary decisions solved using logistic regression. The sample set comprised 230 homogenized meat samples i. e. chicken (55), turkey (54), pork (55), beef (32) and lamb (34) purchased locally as whole cuts of meat over a 10-12 week period. NIR reflectance spectra were recorded over the wavelength range 400-2498nm at 2nm intervals on a NIR Systems 6500 scanning monochromator. The problem was defined as a series of binary decisions i. e. is the meat red or white\ulcorner is the red meat beef or lamb\ulcorner, is the white meat pork or poultry\ulcorner etc. Each of these decisions was made using an individual binary logistic model based on scores derived from principal component or partial least squares (PLS1 and PLS2) analysis. The results obtained were equal to or better than previous reports using factorial discriminant analysis, K-nearest neighbours and PLS2 regression. This new approach using a combination of exploratory and logistic analyses also appears to have advantages of transparency and the use of inherent structure in the spectral data. Additionally, it allows for the use of different data transforms and multivariate regression techniques at each decision step.
Food adulteration is a serious consumer fraud and a matter of concern to food processors and regulatory agencies. A range of analytical methods have been investigated to facilitate the detection of adulterated or mis-labelled foods & food ingredients but most of these require sophisticated equipment, highly-qualified staff and are time-consuming. Regulatory authorities and the food industry require a screening technique which will facilitate fast and relatively inexpensive monitoring of food products with a high level of accuracy. Near infrared spectroscopy has been investigated for its potential in a number of authenticity issues including meat speciation (McElhinney, Downey & Fearn (1999) JNIRS, 7(3), 145 154; Downey, McElhinney & Fearn (2000). Appl. Spectrosc. 54(6), 894-899). This report describes further analysis of these spectral sets using a hierarchical approach and binary decisions solved using logistic regression. The sample set comprised 230 homogenized meat samples i. e. chicken (55), turkey (54), pork (55), beef (32) and lamb (34) purchased locally as whole cuts of meat over a 10-12 week period. NIR reflectance spectra were recorded over the wavelength range 400-2498nm at 2nm intervals on a NIR Systems 6500 scanning monochromator. The problem was defined as a series of binary decisions i. e. is the meat red or white\ulcorner is the red meat beef or lamb\ulcorner, is the white meat pork or poultry\ulcorner etc. Each of these decisions was made using an individual binary logistic model based on scores derived from principal component or partial least squares (PLS1 and PLS2) analysis. The results obtained were equal to or better than previous reports using factorial discriminant analysis, K-nearest neighbours and PLS2 regression. This new approach using a combination of exploratory and logistic analyses also appears to have advantages of transparency and the use of inherent structure in the spectral data. Additionally, it allows for the use of different data transforms and multivariate regression techniques at each decision step.
Safdieh, Joseph J.;Schwartz, David;Weiner, Joseph;Weiss, Jeffrey P.;Rineer, Justin;Madeb, Isaac;Rotman, Marvin;Schreiber, David
Radiation Oncology Journal
/
제32권3호
/
pp.179-186
/
2014
Purpose: To study the long-term outcomes and tolerance in our patients who received dose escalated radiotherapy in the early salvage post-prostatectomy setting. Materials and Methods: The medical records of 54 consecutive patients who underwent radical prostatectomy subsequently followed by salvage radiation therapy (SRT) to the prostate bed between 2003-2010 were analyzed. Patients included were required to have a pre-radiation prostate specific antigen level (PSA) of 2 ng/mL or less. The median SRT dose was 70.2 Gy. Biochemical failure after salvage radiation was defined as a PSA level >0.2 ng/mL. Biochemical control and survival endpoints were analyzed using the Kaplan-Meier method. Univariate and multivariate Cox regression analysis were used to identify the potential impact of confounding factors on outcomes. Results: The median pre-SRT PSA was 0.45 ng/mL and the median follow-up time was 71 months. The 4- and 7-year actuarial biochemical control rates were 75.7% and 63.2%, respectively. The actuarial 4- and 7-year distant metastasis-free survival was 93.7% and 87.0%, respectively, and the actuarial 7-year prostate cancer specific survival was 94.9%. Grade 3 late genitourinary toxicity developed in 14 patients (25.9%), while grade 4 late genitourinary toxicity developed in 2 patients (3.7%). Grade 3 late gastrointestinal toxicity developed in 1 patient (1.9%), and grade 4 late gastrointestinal toxicity developed in 1 patient (1.9%). Conclusion: In this series with long-term follow-up, early SRT provided outcomes and toxicity profiles similar to those reported from the three major randomized trials studying adjuvant radiation therapy.
Lee, Bo Mi;Chang, Sei Kyung;Ko, Seung Young;Yoo, Seung Hoon;Shin, Hyun Soo
Radiation Oncology Journal
/
제31권4호
/
pp.234-238
/
2013
Purpose: Esophageal tolerance is needed to guide the safe administration of stereotactic radiosurgery (SRS). We evaluated comprehensive dose-volume parameters of acute esophageal toxicity in patients with spinal metastasis treated with SRS. Materials and Methods: From May 2008 to May 2011, 30 cases in 27 patients with spinal metastasis received single fraction SRS to targets neighboring esophagus. Endpoints evaluated include length (mm), volume (mL), maximal dose (Gy), and series of dose-volume thresholds from the dose-volume histogram (volume of the organ treated beyond a threshold dose). Results: The median time from the start of irradiation to development of esophageal toxicity was 2 weeks (range, 1 to 12 weeks). Six events of grade 1 esophageal toxicity occurred. No grade 2 or higher events were observed. $V_{15}$ of external surface of esophagus was found to predict acute esophageal toxicity revealed by multivariate analysis (odds radio = 1.272, p = 0.047). Conclusion: In patients with spinal metastasis who received SRS for palliation of symptoms, the threshold dose-volume parameter associated with acute esophageal toxicity was found to be $V_{15}$ of external surface of esophagus. Restrict $V_{15}$ to external surface of esophagus as low as possible might be safe and feasible in radiosurgery.
본 연구는 우리나라 수출 상위 5개 품목 중 하나인 자동차 수출을 대상으로, 승용차 브랜드별 단기 수출수요에 영향을 미치는 이론적 잠재요인을 발굴 및 설계하여 이론적 수출수요예측모델을 개발하고, 다변량시계열분석 기반의 VAR(Vector Auto Regressive)모형을 이용한 실증분석을 통해 개별상품과 시장특성이 반영된 단기수출수요예측모델을 검정하고자 하였다. 따라서 미국에 수출되고 있는 우리나라 소형 승용차 2개 브랜드(엑센트, 아반떼)에 대해 VAR모형을 이용한 분기단위 단기수요예측모델을 개발하고, 브랜드별 예측모델을 통해 산출된 t+1분기 시점의 예측값과 실제 판매된 판매대수를 대상기간을 1분기씩 달리하여 비교평가 하였다. 그 결과 엑센트와 아반떼의 RMSE %는 각각 4.3%와 20.0%로 났으며, 일평균 판매량을 기준으로 보았을 때 엑센트는 3.9일에 해당하고 아반떼는 18.4일에 해당하는 물량임을 알 수 있었다. 따라서 본 연구의 단기수출수요예측모델은 예측력과 검정시점별 일관성 측면에서 활용성이 높은 것으로 평가할 수 있었다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1449-1466
/
2014
본 논문에서는 기초자산의 선물을 이용하는 헷지 전략을 연구하였다. 최적헷지비율을 구하기 위한 전통적인 방법으로 회귀분석이 사용되고 있으나, 현물과 선물 사이에 존재하는 장기균형관계와 금융 시계열 자료의 분산에 존재하는 변동성 군집현상 등의 특징을 설명하지 못하는 한계가 있다. 이를 극복하기 위해 코스피200 지수와 선물 자료에 대해 평균모형으로 벡터오차수정모형을 적합하고, 분산모형으로 다변량 GARCH 모형을 적합하여 분산-공분산 행렬을 추정하고, 이를 통해 최적헷지비율을 구하는 방법을 연구하였다. 실증분석 결과에 의하면 시장이 안정적일 때에는 회귀분석을 사용해도 큰 차이가 없지만, 시장이 불안정해지고 변동성이 커지는 구간에서는 벡터오차수정모형과 다변량 GARCH 모형을 이용하는 경우에 헷지성과가 월등히 좋아지는 결과를 얻을 수 있었다.
Bianciardi, Giorgio;Miller, Joseph D.;Straat, Patricia Ann;Levin, Gilbert V.
International Journal of Aeronautical and Space Sciences
/
제13권1호
/
pp.14-26
/
2012
The only extraterrestrial life detection experiments ever conducted were the three which were components of the 1976 Viking Mission to Mars. Of these, only the Labeled Release experiment obtained a clearly positive response. In this experiment $^{14}C$ radiolabeled nutrient was added to the Mars soil samples. Active soils exhibited rapid, substantial gas release. The gas was probably $CO_2$ and, possibly, other radiocarbon-containing gases. We have applied complexity analysis to the Viking LR data. Measures of mathematical complexity permit deep analysis of data structure along continua including signal vs. noise, entropy vs.negentropy, periodicity vs. aperiodicity, order vs. disorder etc. We have employed seven complexity variables, all derived from LR data, to show that Viking LR active responses can be distinguished from controls via cluster analysis and other multivariate techniques. Furthermore, Martian LR active response data cluster with known biological time series while the control data cluster with purely physical measures. We conclude that the complexity pattern seen in active experiments strongly suggests biology while the different pattern in the control responses is more likely to be non-biological. Control responses that exhibit relatively low initial order rapidly devolve into near-random noise, while the active experiments exhibit higher initial order which decays only slowly. This suggests a robust biological response. These analyses support the interpretation that the Viking LR experiment did detect extant microbial life on Mars.
Purpose: The purpose of this study is to compare machine learning models for anomaly detection of mechanical facility equipment and suggest an anomaly detection system for mechanical facility equipment in subway stations. It helps to predict failures and plan the maintenance of facility. Ultimately it aims to improve the quality of facility equipment. Methods: The data collected from Daejeon Metropolitan Rapid Transit Corporation was used in this experiment. The experiment was performed using Python, Scikit-learn, tensorflow 2.0 for preprocessing and machine learning. Also it was conducted in two failure states of the equipment. We compared and analyzed five unsupervised machine learning models focused on model Long Short-Term Memory Variational Autoencoder(LSTM-VAE). Results: In both experiments, change in vibration and current data was observed when there is a defect. When the rotating body failure was happened, the magnitude of vibration has increased but current has decreased. In situation of axis alignment failure, both of vibration and current have increased. In addition, model LSTM-VAE showed superior accuracy than the other four base-line models. Conclusion: According to the results, model LSTM-VAE showed outstanding performance with more than 97% of accuracy in the experiments. Thus, the quality of mechanical facility equipment will be improved if the proposed anomaly detection system is established with this model used.
Data anomalies seriously threaten the reliability of the bridge structural health monitoring system and may trigger system misjudgment. To overcome the above problem, an efficient and accurate data anomaly detection method is desiderated. Traditional anomaly detection methods extract various abnormal features as the key indicators to identify data anomalies. Then set thresholds artificially for various features to identify specific anomalies, which is the artificial experience method. However, limited by the poor generalization ability among sensors, this method often leads to high labor costs. Another approach to anomaly detection is a data-driven approach based on machine learning methods. Among these, the bidirectional long-short memory neural network (BiLSTM), as an effective classification method, excels at finding complex relationships in multivariate time series data. However, training unprocessed original signals often leads to low computation efficiency and poor convergence, for lacking appropriate feature selection. Therefore, this article combines the advantages of the two methods by proposing a deep learning method with manual experience statistical features fed into it. Experimental comparative studies illustrate that the BiLSTM model with appropriate feature input has an accuracy rate of over 87-94%. Meanwhile, this paper provides basic principles of data cleaning and discusses the typical features of various anomalies. Furthermore, the optimization strategies of the feature space selection based on artificial experience are also highlighted.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.