To obtain insightful knowledge of geochemical process controlling fluoride enrichment in groundwater of the villages near Shilabati river bank, West Bengal, India, multivariate statistical techniques were applied to a subgroup of the dataset generated from major ion analysis of groundwater samples. Water quality analysis of major ion chemistry revealed elevated levels of fluoride concentration in groundwater. Factor analysis (FA) of fifteen hydrochemical parameters demonstrated that fluoride occurrence was due to the weathering and dissolution of fluoride-bearing minerals in the aquifer. A strong positive loading (> 0.75) of fluoride with pH and bicarbonate for FA indicates an alkaline dominated environment responsible for leaching of fluoride from the source material. Mineralogical analysis of soli sediment exhibits the presence of fluoride-bearing minerals in underground geology. Hierarchical cluster analysis (HCA) was carried out to isolate the sampling sites according to groundwater quality. With HCA the sampling sites were isolated into three clusters. The occurrence of abundant fluoride in the higher elevated area of the observed three different clusters revealed that there was more contact opportunity of recharging water with the minerals present in the aquifer during infiltration through the vadose zone.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.1
/
pp.86-109
/
2019
Cloud computing systems' performance is still a central focus of research for determining optimal resource utilization. Running several existing benchmarks simultaneously serves to acquire performance information from specific cloud system resources. However, the complexity of monitoring the existing performance of computing systems is a challenge requiring an efficient and interactive user directing performance-monitoring system. In this paper, we propose an effective multivariate control framework for monitoring cloud systems performance. The proposed framework utilizes the hardware cloud systems performance metrics, collects and displays the performance measurements in terms of meaningful graphics, stores the graphical information in a database, and provides the data on-demand without requiring a third party software. We present performance metrics in terms of CPU usage, RAM availability, number of cloud active machines, and number of running processes on the selected machines that can be monitored at a high control level by either using a cloud service customer or a cloud service provider. The experimental results show that the proposed framework is reliable, scalable, precise, and thus outperforming its counterparts in the field of monitoring cloud performance.
Journal of the Korean Institute of Intelligent Systems
/
v.13
no.4
/
pp.386-390
/
2003
Data mining is a process of discovering useful patterns for decision making from an amount of data. It has recently received much attention in a wide range of business and engineering fields. Classifying a group into subgroups is one of the most important subjects in data mining. Tree-based methods, known as decision trees, provide an efficient way to finding the classification model. The primary concern in tree learning is to minimize a node impurity, which is evaluated using a target variable in the data set. However, there are situations where multiple target variable should be taken into account, for example, such as manufacturing process monitoring, marketing science, and clinical and health analysis. The purpose of this article is to present some methods for measuring the node impurity, which are applicable to data sets with multivariate target variables. For illustration, a numerical cxample is given with discussion.
Red ginseng is made of white ginseng through the steaming and drying procedure. In this process, the amounts of toxic elements of ginseng are decreased and those of effective components, ginsenosides are increased. In order to identify the components alteration of white ginseng by processing time, we applied HPLC-based metabolomics approach combined with the principal component analysis (PCA) multivariate analysis. White ginsengs were steamed at 0, 1, 2, 4, 8 and 16 h, respectively and followed by drying process at moderate temperature. Then the steamed ginsengs and the commercial red ginsengs were analyzed by HPLC. On the basis of HPLC results, PCA multivariate analysis was applied for evaluating the quality of red ginseng, which showed the processed ginsengs are grouped by processed time because less polar ginsenosides were increased in proportion as the steaming time was increased. The purchased red ginsengs were distributed in the range of $0{\sim}1$ hour steaming time. This pilot experiment suggests that HPLC-based metabolomics approach is able to allow the quality of herbal medicines to be controlled with a simple and economic method.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.5
/
pp.3000-3005
/
2015
Reliable monitoring and diagnosis of industrial processes is quite important for in terms of quality and safety. The goal of fault diagnosis is to find process variables responsible for causing specific abnormalities of the process. This work presents a classification-based diagnostic scheme based on nonlinear representation of process data. The use of a nonlinear kernel technique is able to reduce the size of the data considered and provides efficient and reliable representation of the measurement data. As a filtering stage a preprocessing is performed to eliminate unwanted parts of the data with enhanced performance. The case study of an industrial batch process has shown that the performance of the scheme outperformed other methods. In addition, the use of a nonlinear representation technique and filtering improved the diagnosis performance in the case study.
To investigate the nature of the waste materials in the Nanjido Landfill, we have conducted multivariate statistical analysis of geophysical data set comprised of magnetic, gravity, LandSat TM thermal band and surface depression measurement data. Because these data sets show different responses to the depth, we have transformed the observed total field magnetic data and gravity data to the residual reduced-to-pole(RTP) magnetic anomalies and the three dimensional density anomalies, respectively, and utilized the informations about the upper shallow part of the landfills only in the following process. For the statistical analysis at the points of depression measurement, the magnetic, density and LandSat data values at these points are determined by interpolation process. Since the multivarite statistical analysis technique utilizes a clustering algorithm for classification of data set and we have measured the dissimilarity between objects by using Euclidean distance, standardization was applied prior to distance calculation in order to eliminate any scaling effects due to different measurement unit of each data set. The hierarchial grouping technique was used to construct the dendrogram. The optimum number of statistical groups(clusters), which are classified on the basis of geophysical and geotechnical characteristics, appeared to be six on the resulting dendrogram. The result of this study suggests that the dimension and nature of the multicomponent waste landfills can be identified by application of the multivarite statistical analysis technique to integrated geophysical data sets.
Journal of Korean Institute of Industrial Engineers
/
v.24
no.2
/
pp.211-221
/
1998
It is very important to have a satisfactory measurement system, since it is useless to try to improve the manufacturing process without an adequate measurement system. Therefore, evaluation of the measurement system is the first step for the quality improvement of the manufacturing process. To estimate the measurement error we must conduct a controlled gage repeatability and reproducibility(gage R&R) study. Many manufacturers use a gage or instrument to measure multiple dimensions for the overall quality of the manufactured parts. In this case, it is necessary to estimate the gage R&R for multiple dimensions. When a gage measures a large number of dimensions of a part, it is very time-consuming and costly to measure all the dimensions. In this paper we propose the use of the principal component analysis method to identify a few principal components out of the original multivariate measurement capability to explain most of the measurement system variation pattern.
Let $X=\{X_t\}_{t{\geq}0}$ be a $L{\acute{e}}vy$ process in ${\mathbb{R}}^d$ and ${\Omega}$ be an open subset of ${\mathbb{R}}^d$ with finite Lebesgue measure. The quantity $H_{\Omega}(t)={\int_{\Omega}}{\mathbb{P}}^x(X_t{\in}{\Omega})$ dx is called the heat content. In this article we consider its generalized version $H^{\mu}_g(t)={\int_{\mathbb{R}^d}}{\mathbb{E}^xg(X_t){\mu}(dx)$, where g is a bounded function and ${\mu}$ a finite Borel measure. We study its asymptotic behaviour at zero for various classes of $L{\acute{e}}vy$ processes.
In many industrial processes, there are more than two responses (i.e., yield, percent impurity, etc.) of interest, and it is desirable to determine the optimal levels of the factors (i.e., temperature, pressure, etc.) that influence the responses. Suppose the response relationships are assumed to be approximated by second-order polynomial regression models. The problems considered in this paper is, first, to propose how to select polynomial terms to fit the multivariate regression surfaces for a given set of data, and, second, to propose how to analyze the data to obtain an optimal operating condition for the factors. The proposed techniques were applied for empirical process optimization in a tire company in Korea. This case is presented as an illustration.
Communications for Statistical Applications and Methods
/
v.8
no.3
/
pp.697-709
/
2001
In this paper we study two vector-valued process capability indices $C_{p}$=($C_{px}$, $C_{py}$ ) and C/aub pm/=( $C_{pmx}$, $C_{pmy}$) considering process capability indices $C_{p}$ and $C_{pm}$ . First, two asymptotic distributions of plug-in estimators $C_{p}$=($C_{px}$, $C_{py}$ ) and $C_{pm}$ =) $C_{pmx}$, $C_{pmy}$) are derived.. With the asymptotic distributions, we propose asymptotic confidence regions for our indices. Next, obtaining the asymptotic distributions of two bootstrap estimators $C_{p}$=($C_{px}$, $C_{py}$ )and $C_{pm}$ =( $C_{pmx}$, $C_{pmy}$) with our bootstrap algorithm, we will provide the consistency of our bootstrap for statistical inference. Also, with the consistency of our bootstrap, we propose bootstrap asymptotic confidence regions for our indices. (no abstract, see full-text)see full-text)e full-text)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.