Communications for Statistical Applications and Methods
/
제7권1호
/
pp.225-232
/
2000
The linear and quadratic discrimination functions based on normal theory are widely used to classify an observation to one of predefined groups. But the discriminant functions are sensitive to outliers. A high breakdown procedure to estimate location and scatter of multivariate data is the minimum volume ellipsoid or MVE estimator To obtain high breakdown classifiers outliers in multivariate data are detected by using the robust Mahalanobis distance based on MVE estimators and the weighted estimators are inserted in the functions for classification. A samll-sample MOnte Carlo study shows that the high breakdown robust procedures perform better than the classical classifiers.
참기름의 품질을 고소한 냄새, 탄 냄새, 전체적 인 품질 만족도의 세 항목으로 관능 평가하고 상온에서 휘발성 성분을 포집하여 정량 분석하였다 그리고 세 항목의 관능특성 변화에 가장 밀접한 휘발성 성분을 파악하고자 단계적 분별 분석을 실시하였으며 선정된 5개 peaks의 중요도를 정준 분별 분석, 분별 분석 그리고 주성분 분석으로 검토하였다. 5개 peaks 중에서도 가장 중요한 휘발성 성분은 2,5-dimethylpyrazine과 2-methylpyrazine이었으며 각각 고소한 냄새 및 탄 냄새의 척도로 적용할 수 있었다 관능적으로 좋은 품질의 참기름은 2,5-dimethylpyrazine과 2-methylpyrazine의 함량이 각각 $35.82{\sim}4.43$ppm,\;28.90{\sim}6.35ppm$인 것으로 밝혀졌다.
Geographical classification of A. gigas was performed in the present study using UHPLC-DAD combined with multivariate data analysis techniques. Six active constituents were isolated from A. gigas; nodakenin, marmesin, decursinol, demethylsuberosin, decursin and decursinol angelate. One hundred sixty eight A. gigas samples were simultaneously determined using UHPLC-DAD. A principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) was used to classify the samples according to geographical origins (Korea and China). The origins of A. gigas from Korea and China were correctly classified by 81.6% and 93.8% using PLS-DA Y prediction. This result demonstrates the potential use of UHPLC-DAD combined with multivariate analysis techniques as an accurate and rapid method to classify A. gigas according to their geographical origin.
Multivariate statistical procedures were used to analyse data on the chemical composition and in vitro digestibility of four varienties of rice straw after treatment with 4% NaOH solution, 4% urea solution or distilled water (control) for 48 hours. For each treatment, stepwise discriminant analysis identified the variables which maximized differences between varieties and the eigenvectors from principal component analysis quantified the contribution of these criterion variables to varietal differences. The overall response of varieties to chemical treatment was demonstrated qualitatively, by cluster analysis, and quantitatively, from the magnitude of the principal component scores. The analysis revealed that the urea and control treatments elicited the same response whereas NaOH had the greatest effect on the poorest straw variety. Similar analyses conducted on the botanical fractions of the varieties showed that the relative response of the inflorescence, stem, leaf blade and leaf sheath fractions was not altered by chemical treatment.
Background: A set of logical criteria that can accurately identify and verify the cultivation region of raw materials is a critical tool for the scientific management of traditional herbal medicine. Methods and Results: Volatile compounds were obtained from 19 and 32 samples of Angelica gigas Nakai cultivated in Korea and China, respectively, by using steam distillation extraction. The metabolites were identified using GC/MS by querying against the NIST reference library. Data binning was performed to normalize the number of variables used in statistical analysis. Multivariate statistical analyses, such as Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) were performed using the SIMCA-P software. Significant variables with a Variable Importance in the Projection (VIP) score higher than 1.0 as obtained through OPLS-DA and those that resulted in p-values less than 0.05 through one-way ANOVA were selected to verify the marker compounds. Among the 19 variables extracted, styrene, ${\alpha}$-pinene, and ${\beta}$-terpinene were selected as markers to indicate the origin of A. gigas. Conclusions: The statistical model developed was suitable for determination of the geographical origin of A. gigas. The cultivation regions of six Korean and eight Chinese A. gigas. samples were predicted using the established OPLS-DA model and it was confirmed that 13 of the 14 samples were accurately classified.
Ruel R. Cabahug;Ruth Guinita-Cabahug;David J. Edwards
국제학술발표논문집
/
The 1th International Conference on Construction Engineering and Project Management
/
pp.662-666
/
2005
Using data gathered from expert opinion of plant and equipment professionals; this paper presents the key variables that may constitute a maintenance proficient plant operator. The Multivariate Discriminant Analysis (MDA) was applied to generate data and was tested for sensitivity analysis. Results showed that the MDA model was able to classify plant operators' proficiency at 94.10 percent accuracy and determined nine (9) key variables of a maintenance proficient plant operator. The key variables included: i) number of years of experience as equipment operator (PQ1); ii) eye-hand coordination (PQ9); iii) eye-hand-foot coordination (PQ10); iv) planning skills (TE16); v) pay/wage (MQ1); vi) work satisfaction (MQ4); vii) operator responsibilities as defined by management (MF1); viii) clear management policies (MF4); and ix) management pay scheme (MF5). The classification procedure of nine variables formed the general model with the equation viz: OMP (general) = 0.516PQ1 + 0.309PQ9 + 0.557PQ10 + 0.831TE16 + 0.8MQ1 + 0.0216MQ4 + 0.136MF1 + 0.28MF4 + 0.332MF5 - 4.387
Seo, Youngwook;Lee, Ahyeong;Kim, Bal-Geum;Lim, Jongguk
농업과학연구
/
제47권3호
/
pp.633-644
/
2020
Rice paper is an element of Vietnamese cuisine that can be used to wrap vegetables and meat. Rice and starch are the main ingredients of rice paper and their mixing ratio is important for quality control. In a commercial factory, assessment of food safety and quantitative supply is a challenging issue. A rapid and non-destructive monitoring system is therefore necessary in commercial production systems to ensure the food safety of rice and starch flour for the rice paper wrap. In this study, fluorescence hyperspectral imaging technology was applied to classify grain flours. Using the 3D hyper cube of fluorescence hyperspectral imaging (fHSI, 420 - 730 nm), spectral and spatial data and chemometric methods were applied to detect and classify flours. Eight flours (rice: 4, starch: 4) were prepared and hyperspectral images were acquired in a 5 (L) × 5 (W) × 1.5 (H) cm container. Linear discriminant analysis (LDA), partial least square discriminant analysis (PLSDA), support vector machine (SVM), classification and regression tree (CART), and random forest (RF) with a few preprocessing methods (multivariate scatter correction [MSC], 1st and 2nd derivative and moving average) were applied to classify grain flours and the accuracy was compared using a confusion matrix (accuracy and kappa coefficient). LDA with moving average showed the highest accuracy at A = 0.9362 (K = 0.9270). 1D convolutional neural network (CNN) demonstrated a classification result of A = 0.94 and showed improved classification results between mimyeon flour (MF)1 and MF2 of 0.72 and 0.87, respectively. In this study, the potential of non-destructive detection and classification of grain flours using fHSI technology and machine learning methods was demonstrated.
본 연구에서는 온라인 자동차보험 고객 이탈 예측에 있어 의사결정나무를 적용하였다. 우리는 본 연구에서 2003년과 2004년 사이에 온라인 자동차 보험을 계약한 고객의 데이터를 이용하여 의사결정나무를 이용해 고객이탈을 예측하였다. 우리는 C5.0 알고리즘에 기반을 둔 의사결정나무의 예측 결과에 대한 비교를 위해 다변량판별분석과 로짓분석을 이용하였다. 분석결과 의사결정나무 알고리즘은 다른 기법보다 예측성과가 매우 뛰어난 것으로 나타났다. 이러한 실증분석 결과는 온라인 자동차 보험에 있어서 마케팅전략 수립에 유용한 가이드라인을 제공해 줄 것이다.
Purpose In recent years, mobile payment service users have been rapidly increasing. Previous researchers focused on the mobile usage situation such as the elements of mobile payment service, usage pattern, and user behaviors, and the research that is approached from the viewpoint of the user is still insufficient. The aim of this study is to suggest a acceptance-resistance motivation model of choosing a mobile payment service based on the Herzbergs Two-Factor Theory by investigating users' motivation and hygiene factors. Design/methodology/approach For the purpose, literature reviews on factors of choosing a mobile payment service were conducted and classified motivation and hygiene factors. Two hypotheses were set as follows: Hypothesis I is that motivation factors have a positive impact on the choice of mobile payment service, and Hypothesis II is that hygiene factors have a negative impact on the choice of mobile payment service. To test two hypotheses, this study conducted an online questionnaire survey and a multivariate discriminant analysis. Findings The result found that mobile payment service is more likely to be replaced with mobile by improving convenience, simplicity, and ease of use that affect the acceptance motivation of mobile payment service. This result supported the Hypothesis I but not Hypothesis II and contributed to provide implications for future mobile payment service development and marketing utilization.
The multivariate analysis techniques of cluster analysis are examined in this article. The theory and applications of the techniques and computer software concerning these techniques are discussed and sample jobs are included. A hierarchical cluster analysis algorithm, available in the IMSL software package, is applied to a set of data extracted from a group of subjects for the purpose of partitioning a collection of 26 attributes of a weapon system into six clusters of superattributes. A nonhierarchical clustering procedure were applied to a collection of data of tanks considering of twenty-four observations of ten attributes of tanks. The cluster analysis shows that the tanks cluster somewhat naturally by nationality. The principal componant analysis and the discriminant analysis show that tank weight is the single most important discriminator among nationality although they are not shown in this article because of the space restriction. This is a part of thesis for master's degree in operations research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.