• Title/Summary/Keyword: Multivariate CUSUM Control Charts

Search Result 24, Processing Time 0.018 seconds

Copula modelling for multivariate statistical process control: a review

  • Busababodhin, Piyapatr;Amphanthong, Pimpan
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.497-515
    • /
    • 2016
  • Modern processes often monitor more than one quality characteristic that are referred to as multivariate statistical process control (MSPC) procedures. The MSPC is the most rapidly developing sector of statistical process control and increases interest in the simultaneous inspection of several related quality characteristics. Most multivariate detection procedures based on a multi-normality assumptions are independent, but there are many processes that assume non-normality and correlation. Many multivariate control charts have a lack of related joint distribution. Copulas are tool to construct multivariate modelling and formalizing the dependence structure between random variables and applied in several fields. From copula literature review, there are a few copula to apply in MSPC that have multivariate control charts, and represent a successful tool to identify an out-of-control process. This paper presents various types of copulas modelling for the multivariate control chart. The performance measures of the control chart are the average run length (ARL) and the average number of observations to signal (ANOS). Furthermore, a Monte Carlo simulation is shown when the observations were from an exponential distribution.

A Study on the Relation between Multivariate Process Control Techniques and Trend Algorithm (다변량 공정관리 기술과 추세알고리즘의 연계에 관한 조사연구)

  • Jung, Hae-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.225-235
    • /
    • 2011
  • Autoregressed Controller, which have trend algorithm, seeks to minimize variability by transferring the output variable to the related process input variable, while multivariate process control techniques seek to reduce variability by detecting and eliminating assignable causes of variation. In the case of process control, a very reasonable objective is to try to minimize the variance of the output deviations from the target or set point. We also investigate algorithm with relevant Shewhart chart, Theoretical control charts, precontrol and process capability. To help the people who want to make the theoretical system, we compare the main techniques in "a study on the relation between multivariate process control techniques and trend algorithms".

Numerical Switching Performances of Cumulative Sum Chart for Dispersion Matrix

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.12 no.3
    • /
    • pp.78-84
    • /
    • 2019
  • In many cases, the quality of a product is determined by several correlated quality variables. Control charts have been used for a long time widely to control the production process and to quickly detect the assignable causes that may produce any deterioration in the quality of a product. Numerical switching performances of multivariate cumulative sum control chart for simultaneous monitoring all components in the dispersion matrix ${\Sigma}$ under multivariate normal process $N_p({\underline{\mu}},{\Sigma})$ are considered. Numerical performances were evaluated for various shifts of the values of variances and/or correlation coefficients in ${\Sigma}$. Our computational results show that if one wants to quick detect the small shifts in a process, CUSUM control chart with small reference value k is more efficient than large k in terms of average run length (ARL), average time to signal (ATS), average number of switches (ANSW).

Comparison of accumulate-combine and combine-accumulate methods in multivariate CUSUM charts for mean vector

  • Chang, Duk-Joon;Heo, Sunyeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.919-929
    • /
    • 2013
  • We compared two basic methods, combine-accumulate method and accumulate-combine method, using the past quality information in multivariate quality control procedure for monitoring mean vector of multivariate normal process. When small or moderate shifts have occurred, accumulate-combine method yields smaller average run length (ARL) and average time to signal (ATS) than combine-accumulate method. On the other hand, we have found from our numerical results that combine-accumulate method has better performances in terms of switching behavior than accumulate-combine method. In industry, a quality engineer could select one of the two method under the comprehensive consideration about the required time to signal, switching behavior, and other physical factors in the production process.