• Title/Summary/Keyword: Multiuser interference

Search Result 156, Processing Time 0.031 seconds

Partial IC Blind Multiuser Detection for CDMA Systems (CDMA 시스템을 위한 부분 간섭 제거 블라인드 다중 사용자 검출)

  • Woo Dae-Ho;Yoo Young-Gyo;Byun Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.184-190
    • /
    • 2006
  • In this paper, we propose the blind multiuser detector which is robust against the effects of near-far and multiuser interference. The proposed detector is composed of the partial IC(interference canceller) and the blind MOE(minimum output energy) multiuser detector. The partial IC partially eliminates interference components from the received signal then the output of partial IC is fed into the input of multiuser detector. Simulation results show that the proposed detector has the robust property but the performance of conventional MOE multiuser detector is rapidly degraded in case of existing both near far and multiuser. Thus, the proposed partial IC BMUD(blind multiuser detection) technique has better performance than the conventional MOE.

Precoding Method for Increasing System Capacity in Multiuser MIMO Downlink Channels (다중사용자 MIMO 하향링크 채널 환경에서 시스템 용량 향상을 위한 프리코딩 기법)

  • Kim, Kwang-Yoon;Lee, Jong-Sik;Koo, Sung-Wan;Yang, Jea-Su;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.12-16
    • /
    • 2008
  • In this paper, we study precoding techniques for co-channel interference suppression in multiuser MIMO systems. DPC is optimal techniques to achieve the system capacity of multiuser MIMO downlink channels. DPC is not proper in practical wireless systems because complexity is very high. So block diagonal precoding for multiuser MIMO downlink channel is studied. The block diagonal precoding is used to suppress co-channel interference between multiuser. Block diagonal precoding method, whose complexity is reduced by modified null space operation, change multiuser MIMO channel to multiple single-user MIMO channel. We also use V-BLAST decoder in receiver. V-BLAST decoder can achieve increased system capacity in proportion to the number of users. We show improved system performance by using computer simulation.

  • PDF

Blind MOE-PIC Multiuser Detector for Multicarrier DS-CDMA Systems (다중 반송파 DS-CDMA 시스템을 위한 블라인드 MOE-PIC 다중사용자 검출기)

  • Woo Dae ho;Lee Seung yong;Byun Youn shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.153-157
    • /
    • 2005
  • Frequency selective fading occurs due to the Doppler Effect in mobile communication systems. The performances of the systems are rapidly reduced due to effect of multiuser interference under frequency selective channels at DS-CDMA systems. To overcome these problems, we adopted the multi-carrier modulation techniques, and it is able to solve the frequency selective channel effects by means of these modulation techniques, and interference problems due to multiuser access are solved by means of multiuser detection techniques. In this paper, we proposed the blind MOE/PIC multiuser detection method which is composed of both the blind multiuser detection technique and parallel interference canceller. Thus, simulation results show that the proposed method performs better than conventional methods.

SLNR-based Precoder Design in Multiuser Interference Channel with Channel Estimation Error

  • Seo, Bangwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.40-52
    • /
    • 2020
  • In this paper, we consider a precoder design problem for multiuser interference channel. Most of the conventional schemes for precoder design utilize a signal-to-interference-plus-noise ratio (SINR) as a cost function. However, since the SINR metric of a desired transmitter-receiver pair is a function of precoding vectors of all transmitters in the multiuser interference channel, an analytic closed-form solution is not available for the precoding vector of a desired transmitter that maximizes the SINR metric. To eliminate coupling between the precoding vectors of all transmitters and to find a closed-form solution for the precoding vector of the desired transmitter, we use a signal-to-leakage-plus-noise ratio (SLNR) instead as a cost function because the SLNR at a transmitter is a function of the precoding vector of the desired transmitter only. In addition, channel estimation errors for undesired links are considered when designing the precoding vector because they are inevitable in a multiuser interference channel. In this case, we propose a design scheme for the precoding vector that is robust to the channel estimation error. In the proposed scheme, the precoding vector is designed to maximize the worst-case SLNR. Through computer simulation, we show that the proposed scheme has better performance than the conventional scheme in terms of SLNR, SINR, and sum rate of all users.

A New Receiver Combining Antenna Array Receiver and Successive Interference Cancelling Multiuser Detector in DS/CDMA Systems (DS/CDMA 시스템에서 안테나 배열 수신기와 연속 간섭 제거 다중 사용자 검출기를 결합한 새로운 수신기)

  • 유성균;곽경섭
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.582-589
    • /
    • 2002
  • In this paper, we propose a new method that combines antenna array, which employs any beamforming algorithm, and successive interference cancelling multiuser detector which improves the performance of the receiver and analyse its performance. Antenna away receivers can improve the performance by spatially discriminating among the users and reducing the multiple access interference. But the performance of the receivers degrades when the difference of the direction of arrival of the users are too small. Many interference cancelling multiuser detectors have been suggested for DS/CDMA systems which have low complexity for their performance. In this paper, we show how to mitigate such a degradation by combining successive interference cancelling multiuser detector.

  • PDF

Linear Suppression of Intercarrier Interference in Time-Varying OFDM Systems: From the Viewpoint of Multiuser Detection

  • Li, Husheng
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.605-615
    • /
    • 2010
  • Intercarrier interference (ICI) in orthogonal frequency division multiplexing (OFDM) systems, which causes substantial performance degradation in time-varying fading channels, is analyzed. An equivalent spreading code formulation is derived based on the analogy of OFDM and code division multiple access (CDMA) systems. Techniques as linear multiuser detection in CDMA systems are applied to suppress the ICI in OFDM systems. The performance of linear detection, measured using multiuser efficiency and asymptotic multiuser efficiency, is analyzed given the assumption of perfect channel state information (CSI), which serves as an upper bound for the performance of practical systems. For systems without CSI, time domain and frequency domain channel estimation based linear detectors are proposed. The performance gains and robustness of a linear minimum mean square error (LMMSE) filter over a traditional filter (TF) and matched filter (MF) in the high signal-to-noise ratio (SNR) regime are demonstrated with numerical simulation results.

Design and Performance Analysis of a DS/CDMA Multiuser Detection Algorithm in a Mixed Structure Form (혼합구조 형태의 DS/CDMA 다중사용자 검파 알고리즘 설계 및 성능 분석)

  • Lim, Jong-Min
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.51-58
    • /
    • 2002
  • The conventional code division multiple access(CDMA) detector shows severe degradation in communication quality as the number of users increases due to multiple access interferences(MAI). This problem thus restricts the user capacity. Various multiuser detection algorithms have been proposed to overcome the MAI problem. The existing detectors can be generally classified into one of the two categories : linear multiuser detection and subtractive interference cancellation detectors. In the linear multiuser detection, a linear transform is applied to the soft outputs of the conventional detector. In the subtractive interference cancellation detection, estimates of the interference are generated and subtracted out from the received signal. There has been great interest in the family of the subtractive interference cancellation detection because the linear multiuser detection exhibits the disadvantage of taking matrix inversion operations. The successive interference cancellation (SIC) and the parallel interference cancellation (PIC) are the two most popular structures in the subtractive interference cancellation detector. The SIC structure is very simple in hardware complexity, but has the disadvantage of increased processing delay time, while the PIC structure is good in performance, but shows the disadvantage of increased hardware complexity. In this paper we propose a mixed structure form of SIC and PIC in order to achieve good performance as well as simple hardware complexity. A performance analysis of the proposed scheme has been made, and the superior characteristics of the mixed structure are demonstrated by extensive computer simulations. 

Enhanced deep soft interference cancellation for multiuser symbol detection

  • Jihyung Kim;Junghyun Kim;Moon-Sik Lee
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.929-938
    • /
    • 2023
  • The detection of all the symbols transmitted simultaneously in multiuser systems using limited wireless resources is challenging. Traditional model-based methods show high performance with perfect channel state information (CSI); however, severe performance degradation will occur if perfect CSI cannot be acquired. In contrast, data-driven methods perform slightly worse than model-based methods in terms of symbol error ratio performance in perfect CSI states; however, they are also able to overcome extreme performance degradation in imperfect CSI states. This study proposes a novel deep learning-based method by improving a state-of-the-art data-driven technique called deep soft interference cancellation (DSIC). The enhanced DSIC (EDSIC) method detects multiuser symbols in a fully sequential manner and uses an efficient neural network structure to ensure high performance. Additionally, error-propagation mitigation techniques are used to ensure robustness against channel uncertainty. The EDSIC guarantees a performance that is very close to the optimal performance of the existing model-based methods in perfect CSI environments and the best performance in imperfect CSI environments.

MMSE Based Nonlinear Precoding for Multiuser MIMO Broadcast Channels with Inter-Cell Interference (다중사용자 다중입출력 하향링크 채널에서 인접셀 간섭을 고려한 MMSE 기반 비선형 프리코딩)

  • Lee, Kyoung-Jae;Sung, Hakjea;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.896-902
    • /
    • 2016
  • In this paper, we investigate a minimum mean-squared error based nonlinear successive precoding method as a practical solution of dirty paper coding for multiuser downlink channels where each user has more than one antenna in the presence of other cell interference (OCI). Unlike conventional zero-forcing (ZF) based methods, the proposed scheme takes the OCI plus noise into account when suppressing the inter-cell multiuser interference, which results in improvement of the received signal-to-interference-plus-noise ratio. Simulation results show that the proposed scheme outperforms conventional methods in terms of sum rate for various OCI configurations.

A General Method for Error Probability Computation of UWB Systems for Indoor Multiuser Communications

  • Durisi, Giuseppe;Tarable, Alberto;Romme, Jac;Benedetto, Sergio
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.354-364
    • /
    • 2003
  • A general method for the evaluation of the symbol error probability (SER) of ultra wideband (UWB) systems with various kind of modulation schemes (N-PAM, M-PPM, Bi-Orthogonal), in presence of multipath channel, multiuser and strong narrowband interference, is presented. This method is shown to be able to include all the principal multiaccess techniques proposed so far for UWB, time hopping (TH), direct sequence (DS) and optical orthogonal codes (OOC). A comparison between the performance of these multiple access and modulation techniques is given, for both ideal Rake receiver and minimum mean square error (MMSE) equalizer. It is shown that for all the analyzed multiple access schemes, a Rake receiver exhibits a high error floor in presence of narrowband interference (NBI) and that the value of the error floor is in-fluenced by the spectral characteristics of the spreading code. As expected, an MMSE receiver offers better performance, representing a promising candidate for UWB systems. When the multiuser interference is dominant, all multiple access techniques exhibit similar performance under high-load conditions. If the number of users is significantly lower than the spreading factor, then DS outperforms both TH and OOC. Finally 2PPM is shown to offer better performance than the other modulation schemes in presence of multiuser interference; increasing the spreading factor is proposed as a more effective strategy for SER reduction than the use of time diversity.