• Title/Summary/Keyword: Multistep gain

Search Result 2, Processing Time 0.015 seconds

Wideband VHF and UHF RF Front-End Receiver for DVB-H Application

  • Park, Joon-Hong;Kim, Sun-Youl;Ho, Min-Hye;Baek, Dong-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.81-85
    • /
    • 2012
  • This paper presents a wideband and low-noise direct conversion front-end receiver supporting VHF and UHFbands simultaneously. The receiver iscomposed of a low-noise amplifier (LNA), a down conversion quadrature mixer, and a frequency divider by 2. The cascode configuration with the resistor feedback is exploited in the LNA to achieve a wide operating bandwidth. Four gainstep modesare employed using a switched resistor bank and a capacitor bank in the signal path to cope with wide dynamic input power range. The verticalbipolar junction transistors are used as the switching elements in the mixer to reduce 1/f noise corner frequency. The proposed front-end receiver fabricated in 0.18 ${\mu}m$ CMOS technology shows very low minimum noise figureof 1.8 dB and third order input intercept pointof -12dBm inthe high-gain mode of 26.5 dBmeasured at 500 MHz.The proposed receiverconsumeslow current of 20 mA from a 1.8 V power supply.

GENETIC ALTERATIONS OF HUMAN ORAL CANCERS USING COMPARATIVE GENOMIC HYBRIDIZATION (Comparative genomic hybridization 기법을 이용한 인체 구강암의 유전자 변화에 대한 연구)

  • Lee, Myeong-Reoyl;Shim, Kwang-Sup;Lee, Young-Soo;Woo, Soon-Seop;Kong, Gu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.3
    • /
    • pp.245-253
    • /
    • 2000
  • The development and progression of oral cancer is associated with an accumulation of multiple genetic alterations through the multistep processes. Comparative genomic hybridization(CGH), newly developed cytogenetic and molecular biologic technique, has been widely accepted as a useful method to allow the detection of genetic imbalance in solid tumors and the screening for chromosome sites frequently affected by gains or losses in DNA copy number. The authors examined 19 primary oral squamous cell carcinomas using CGH to identify altered chromosome regions that might contain novel oncogenes and tumor suppressor genes. Interrelationship between these genetic aberrations detected and major oncogenes and tumor suppressor genes previously recognized in carcinogenesis of oral cancers was studied. 1. Changes in DNA copy number were detected in 14 of 19 oral cancers (78.9%, mean: 5.58, range: $3{\sim}13$). High level amplification was present in 4 cases at 9p23, $12p21.1{\sim}q13.1$, 3q and $8q24{\sim}24.3$. Fourteen cases(78.9%, mean: 3.00, range: $1{\sim}8$) showed gains of DNA copy number and 12 cases(70.5%, mean: 2.58, range: $1{\sim}9$) revealed losses of DNA copy number. 2. The most common gains were detected on 3q(52.6%), 5p(21.0%), 8q(21.0%), 9p(21.0%), and 11q(21.0%). The losses of DNA copy number were frequently occurred at 9p(36.8%), 17q(36.8%), 13q(26.3%), 4p(21.0%) and 9p(21.0%). 3. The minimal common regions of gains were repeatedly observed at $3q24{\sim}26.7$, $3q27{\sim}29$, $1q22{\sim}31$, $5p12{\sim}13.3$, $8q23{\sim}24$, and 11q13.1-13.3. The minimal common regions of losses were detected at $9q11{\sim}21.3$, 17p31, $13q22{\sim}34$, and 14p16. 4. In comparison of CGH results with tumor stages, the lower stage group showed more frequent gain at 3q, 5q, 9p, and 14q, whereas gains at 1q($1q22{\sim}31$) and 11q($11q13.1{\sim}13.3$) were mainly detected in higher stage group. The loss at $13q22{\sim}34$ was exclusively detected in higher stage. The results indicate that the most frequent genetic alterations in the development of oral cancers were gains at $3q24{\sim}26.3$, $1q22{\sim}31$, and $5p12{\sim}13.3$ and losses at $9q11{\sim}21.3$, 17p31, and 13q. It is suggested that genetic alterations manifested as gains at $3q24{\sim}26.3$, $3q27{\sim}29$, $5p12{\sim}13.3$ and 5p are associated with the early progression of oral cancer. Gains at $1q22{\sim}31$ and $11q13.1{\sim}13.3$ and loss at 13q22-34 could be involved in the late progression of oral cancers.

  • PDF