• Title/Summary/Keyword: Multispectral image sensor

Search Result 39, Processing Time 0.033 seconds

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

Image Fusion of High Resolution SAR and Optical Image Using High Frequency Information (고해상도 SAR와 광학영상의 고주파 정보를 이용한 다중센서 융합)

  • Byun, Young-Gi;Chae, Tae-Byeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.75-86
    • /
    • 2012
  • Synthetic Aperture Radar(SAR) imaging system is independent of solar illumination and weather conditions; however, SAR image is difficult to interpret as compared with optical images. It has been increased interest in multi-sensor fusion technique which can improve the interpretability of $SAR^{\circ\circ}$ images by fusing the spectral information from multispectral(MS) image. In this paper, a multi-sensor fusion method based on high-frequency extraction process using Fast Fourier Transform(FFT) and outlier elimination process is proposed, which maintain the spectral content of the original MS image while retaining the spatial detail of the high-resolution SAR image. We used TerraSAR-X which is constructed on the same X-band SAR system as KOMPSAT-5 and KOMPSAT-2 MS image as the test data set to evaluate the proposed method. In order to evaluate the efficiency of the proposed method, the fusion result was compared visually and quantitatively with the result obtained using existing fusion algorithms. The evaluation results showed that the proposed image fusion method achieved successful results in the fusion of SAR and MS image compared with the existing fusion algorithms.

Photochemical Reflectance Index (PRI) Mapping using Drone-based Hyperspectral Image for Evaluation of Crop Stress and its Application to Multispectral Imagery (작물 스트레스 평가를 위한 드론 초분광 영상 기반 광화학반사지수 산출 및 다중분광 영상에의 적용)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.637-647
    • /
    • 2019
  • The detection of crop stress is an important issue for the accurate assessment of yield decline. The photochemical reflectance index (PRI) was developed as a remotely sensed indicator of light use efficiency (LUE). The PRI has been tested in crop stress detection and a number of studies demonstrated the feasibility of using it. However, only few studies have focused on the use of PRI from remote sensing imagery. The monitoring of PRI using drone and satellite is made difficult by the low spectral resolution image captures. In order to estimate PRI from multispectral sensor, we propose a band fusion method using adjacent bands. The method is applied to the drone-based hyperspectral and multispectral imagery and estimated PRI explain 79% of the original PRI. And time series analyses showed that two PRI data (drone-based and SRS sensor) had very similar temporal variations. From these results, PRI from multispectral imagery using band fusion can be used as a new method for evaluation of crop stress.

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

The comparison of spatial/spectral distortion on the hybrid pansharpened images by the spatial correlation methods (공간 상관도 기법에 따른 하이브리드 융합영상의 공간/분광 왜곡 평가)

  • Choi, Jae-Wan;Kim, Dae-Sung;Kim, Yong-Ii
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • In remote sensing, it has been a difficult task to obtain a multispectral image with high spatial resolution because of the technical limitation of satellite sensors. In order to solve these problems, various pansharpening algorithms have been tried and proposed. However, most pansharpened images created by various approaches tend to distort the spectral characteristics of the original multispectral image or decrease the visual sharpness of the panchromatic image. To minimize the spectral distortion of pansharpened image while preserving spatial information of the panchromatic image, a hybrid pansharpening algorithm based on the spatial correlation was proposed. In this paper, we analyzed the spatial and spectral distortion of the hybrid pansharpened images generated by the various spatial correlation methods. In the experiments, we proved that the method by using Laplacian filtering was more efficient than other high frequency extraction algorithms in the viewpoint of spectral distortion and spatial sharpness.

Application of Spectral Indices to Drone-based Multispectral Remote Sensing for Algal Bloom Monitoring in the River (하천 녹조 모니터링을 위한 드론 다중분광영상의 분광지수 적용성 평가)

  • Choe, Eunyoung;Jung, Kyung Mi;Yoon, Jong-Su;Jang, Jong Hee;Kim, Mi-Jung;Lee, Ho Joong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • Remote sensing techniques using drone-based multispectral image were studied for fast and two-dimensional monitoring of algal blooms in the river. Drone is anticipated to be useful for algal bloom monitoring because of easy access to the field, high spatial resolution, and lowering atmospheric light scattering. In addition, application of multispectral sensors could make image processing and analysis procedures simple, fast, and standardized. Spectral indices derived from the active spectrum of photosynthetic pigments in terrestrial plants and phytoplankton were tested for estimating chlorophyll-a concentrations (Chl-a conc.) from drone-based multispectral image. Spectral indices containing the red-edge band showed high relationships with Chl-a conc. and especially, 3-band model (3BM) and normalized difference chlorophyll index (NDCI) were performed well (R2=0.86, RMSE=7.5). NDCI uses just two spectral bands, red and red-edge, and provides normalized values, so that data processing becomes simple and rapid. The 3BM which was tuned for accurate prediction of Chl-a conc. in productive water bodies adopts originally two spectral bands in the red-edge range, 720 and 760 nm, but here, the near-infrared band replaced the longer red-edge band because the multispectral sensor in this study had only one shorter red-edge band. This index is expected to predict more accurately Chl-a conc. using the sensor specialized with the red-edge range.

Spectral Classification of Man-made Materials in Urban Area Using Hyperspectral Data

  • Kim S. H.;Kook M. J.;Lee K. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.10-13
    • /
    • 2004
  • Hyperspectral data has a great advantage to classify various surface materials that are spectrally similar. In this study, we attempted to classify man-made materials in urban area using Hyperion data. Hyperion imagery of Seoul was initially processed to minimize radiometric distortions caused by sensor and atmosphere. Using color aerial photographs. we defined seven man-made surfaces (concrete, asphalt road. railroad, buildings, roof, soil, shadow) for the classification in Seoul. The hyperspectral data showed the potential to identify those manmade materials that were difficult to be classified by multispectral data. However. the classification of road and buildings was not quite satisfactory due to the relatively low spatial resolution of Hyperion image. Further, the low radiometric quality of Hyperion sensor was another limitation for the application in urban area.

  • PDF

Mapping Within-field Variability Using Airborne Imaging Systems: A Case Study from Missouri Precision Agriculture

  • Hong, S.Y.;Sudduth, K.A.;Kitchen, N.R.;Palm, H.L.;Wiebold, W.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1049-1051
    • /
    • 2003
  • This study investigated the use of airborne image data to provide estimates of within -field variability in soil properties and crop growth as an alternative to extensive field data collection. Hyperspectral and multispectral images were acquired in 2000, 2001, and 2002 for central Missouri experimental fields. Data were converted to reflectance using chemically-treated reference tarps with known reflectance levels. Geometric distortion of the hyperspectral pushbroom sensor images was corrected with a rubber sheeting transformation. Statistical analyses were used to relate image data to field-measured soil properties and crop characteristics. Results showed that this approach has potential; however, it is important to address a number of implementation issues to insure quality data and accurate interpretations.

  • PDF

Hierarchical Clustering Approach of Multisensor Data Fusion: Application of SAR and SPOT-7 Data on Korean Peninsula

  • Lee, Sang-Hoon;Hong, Hyun-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.65-65
    • /
    • 2002
  • In remote sensing, images are acquired over the same area by sensors of different spectral ranges (from the visible to the microwave) and/or with different number, position, and width of spectral bands. These images are generally partially redundant, as they represent the same scene, and partially complementary. For many applications of image classification, the information provided by a single sensor is often incomplete or imprecise resulting in misclassification. Fusion with redundant data can draw more consistent inferences for the interpretation of the scene, and can then improve classification accuracy. The common approach to the classification of multisensor data as a data fusion scheme at pixel level is to concatenate the data into one vector as if they were measurements from a single sensor. The multiband data acquired by a single multispectral sensor or by two or more different sensors are not completely independent, and a certain degree of informative overlap may exist between the observation spaces of the different bands. This dependence may make the data less informative and should be properly modeled in the analysis so that its effect can be eliminated. For modeling and eliminating the effect of such dependence, this study employs a strategy using self and conditional information variation measures. The self information variation reflects the self certainty of the individual bands, while the conditional information variation reflects the degree of dependence of the different bands. One data set might be very less reliable than others in the analysis and even exacerbate the classification results. The unreliable data set should be excluded in the analysis. To account for this, the self information variation is utilized to measure the degrees of reliability. The team of positively dependent bands can gather more information jointly than the team of independent ones. But, when bands are negatively dependent, the combined analysis of these bands may give worse information. Using the conditional information variation measure, the multiband data are split into two or more subsets according the dependence between the bands. Each subsets are classified separately, and a data fusion scheme at decision level is applied to integrate the individual classification results. In this study. a two-level algorithm using hierarchical clustering procedure is used for unsupervised image classification. Hierarchical clustering algorithm is based on similarity measures between all pairs of candidates being considered for merging. In the first level, the image is partitioned as any number of regions which are sets of spatially contiguous pixels so that no union of adjacent regions is statistically uniform. The regions resulted from the low level are clustered into a parsimonious number of groups according to their statistical characteristics. The algorithm has been applied to satellite multispectral data and airbone SAR data.

  • PDF

Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector (퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • In this study, an approach of image fusion in decision level has been proposed for unsupervised image classification using the images acquired from multiple sensors with different characteristics. The proposed method applies separately for each sensor the unsupervised image classification scheme based on spatial region growing segmentation, which makes use of hierarchical clustering, and computes iteratively the maximum likelihood estimates of fuzzy class vectors for the segmented regions by EM(expected maximization) algorithm. The fuzzy class vector is considered as an indicator vector whose elements represent the probabilities that the region belongs to the classes existed. Then, it combines the classification results of each sensor using the fuzzy class vectors. This approach does not require such a high precision in spatial coregistration between the images of different sensors as the image fusion scheme of pixel level does. In this study, the proposed method has been applied to multispectral SPOT and AIRSAR data observed over north-eastern area of Jeollabuk-do, and the experimental results show that it provides more correct information for the classification than the scheme using an augmented vector technique, which is the most conventional approach of image fusion in pixel level.