• 제목/요약/키워드: Multispectral Images

검색결과 184건 처리시간 0.035초

Wavelet 변화을 이용한 우리별 수신영상 압축기법 (REMOTELY SENSEDC IMAGE COMPRESSION BASED ON WAVELET TRANSFORM)

  • 이흥규;김성환;김경숙;최순달
    • Journal of Astronomy and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.198-209
    • /
    • 1996
  • 본 논문에서는 인공위성을 통하여 수신되는 다중대역 영상을 압축하기 위한 방법을 제시한다. 본 논문에서 제안하는 방법은 다대역 영상에서 보이는 대역간 상관성 및 대역내에서 각 화소간의 상관성을 줄이는 목표를 가지고, 화소간 상관성을 줄이기 위해서는 wavelet 변환을 사용하고, 대역간 상관성을 줄이기 위해서는 대역간 데이타블럭의 화소값간의 상관관계를 1차식으로 모델링하고 회귀(regression) 방법을 이용하여 대역간 화소 차이을 가깝게 하여 데이타 압축율을 향상시킨다. 변환계수는 데이타 압축율을 높이기 위해 변형된 힐버트 커브와 RLE 그리고 허프만 코딩을 이용하였다. 제안된 알고리듬은 우리별 1호 영상과 LANDSAT MSS 영상을 이용하여 실험하였으며, 성능평가 척도로는 원영상과 복원된 영상의 PSNR과 ISODATA를 이용할 때의 분류 능력을 비교하였다.

  • PDF

위성 및 드론 영상을 이용한 해안쓰레기 모니터링 기법 개발 (Development of Marine Debris Monitoring Methods Using Satellite and Drone Images)

  • 김흥민;박수호;한정익;예건희;장선웅
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1109-1124
    • /
    • 2022
  • 본 연구에서는 단시간 내 광범위한 지역에 대한 해양쓰레기 발생 실태 파악이 가능하도록 위성 및 드론다중분광 영상을 이용한 해안쓰레기 모니터링 기법을 제안한다. Sentinel-2 위성 영상을 이용한 해안쓰레기 탐지를 위해 multi-layer perceptron (MLP) 모델을 적용하였고, 드론 다중분광 영상을 이용한 해안쓰레기 탐지를 위해 딥러닝 모델 중 U-Net, DeepLabv3+ (ResNet50), DeepLabv3+ (Inceptionv3)의 탐지 성능평가 및 비교를 수행하였다. 위성 영상을 이용한 해안쓰레기 탐지 결과 F1-Score 0.97을 보였다. 드론 다중분광 영상을 이용한 해안쓰레기 탐지는 초목류와 플라스틱류에 대한 탐지를 수행하였고, 탐지 결과 DeepLabv3+ (Inceptionv3) 모델이 mean Intersection over Union (mIoU) 0.68로 가장 우수한 성능을 보였다. 초목류는 F1-Score 0.93, IoU는 0.86을 보인 반면에 플라스틱류의 F1-Score 0.5, IoU는 0.33으로 낮은 성능을 보였다. 그러나 플라스틱류 마스크 영상 생성을 위해 적용된 분광 지수식의 F1-Score는 0.81로 DeepLabv3+ (Inceptionv3)의 플라스틱류 탐지 성능보다 높은 성능을 보이며, 분광 지수식을 이용한 플라스틱류 모니터링이 가능할 것으로 판단된다. 본 연구에서 제안된 해안쓰레기 모니터링 기법을 통해 해안쓰레기 발생에 대한 정량적 자료 제공과 더불어 해안쓰레기 수거·처리 계획 수립에 활용할 수 있다.

디지털카메라와 다중영상접합법을 이용한 다차원 정사영상의 구축 (Construction of Multi-Dimensional Ortho-Images with a Digital Camera and the Multi-Image Connection Method)

  • 김동문
    • 디지털융복합연구
    • /
    • 제12권8호
    • /
    • pp.295-302
    • /
    • 2014
  • 3차원 공간정보를 구축하기 위해서는 고정밀의 3차원 점군데이터를 취득할 수 있는 레이저스캐닝 기술과 고해상도의 다중분광 영상정보를 취득할 수 있는 사진측량용 카메라의 활용은 필수이다. 그러나 사진측량용 카메라는 장비특성상 높은 구입비와 어려운 구입경로, 낮은 적용성으로 폭넓은 활용분야에 비해 활용성이 떨어진다. 따라서 일반사용자가 빠르고 간편하게 접근할 수 있는 디지털카메라를 이용하여 다차원 정사영상을 구축하는 기법을 연구하였다. 즉 3차원공간정보의 핵심자료인 3차원 다중분광영상정보를 구축하기 위해 디지털카메라를 개조하고 캘리브레이션 작업을 수행하였다. 스테레오 사진측량을 위한 기준점 측량과 관측대상에 대한 다중분광촬영, 정사영상으로의 변환 등을 거쳐 다차원 정사영상을 구축하였다.

특징 융합을 이용한 농작물 다중 분광 이미지의 의미론적 분할 (Semantic Segmentation of Agricultural Crop Multispectral Image Using Feature Fusion)

  • 문준렬;박성준;백중환
    • 한국항행학회논문지
    • /
    • 제28권2호
    • /
    • pp.238-245
    • /
    • 2024
  • 본 논문에서는 농작물 다중 분광 이미지에 대해 특징 융합 기법을 이용하여 의미론적 분할 성능을 향상시키기 위한 프레임워크를 제안한다. 스마트팜 분야에서 연구 중인 딥러닝 기술 중 의미론적 분할 모델 대부분은 RGB(red-green-blue)로 학습을 진행하고 있고 성능을 높이기 위해 모델의 깊이와 복잡성을 증가시키는 데에 집중하고 있다. 본 연구는 기존 방식과 달리 다중 분광과 어텐션 메커니즘을 통해 모델을 최적화하여 설계한다. 제안하는 방식은 RGB 단일 이미지와 함께 UAV (unmanned aerial vehicle)에서 수집된 여러 채널의 특징을 융합하여 특징 추출 성능을 높이고 상호보완적인 특징을 인식하여 학습 효과를 증대시킨다. 특징 융합에 집중할 수 있도록 모델 구조를 개선하고, 작물 이미지에 유리한 채널 및 조합을 실험하여 다른 모델과의 성능을 비교한다. 실험 결과 RGB와 NDVI (normalized difference vegetation index)가 융합된 모델이 다른 채널과의 조합보다 성능이 우수함을 보였다.

Biorthogonal Wavelets-based Landsat 7 Image Fusion

  • Choi, Myung-Jin;Kim, Moon-Gyu;Kim, Tae-Jung;Kim, Rae-Young
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.724-726
    • /
    • 2003
  • Currently available image fusion methods are not efficient for fusing the Landsat 7 images. Significant color distortion is one of the major problems. In this paper, using the well-known wavelet based method for data fusion between high-resolution panchromatic and low-resolution multispectral satellite images, we performed Landsat 7 image fusion. Based on the experimental results obtained from this study, we analyzed some reasons for color distortion. A new approach using the biorthogonal wavelets based method for data fusion is presented. This new method has reached an optimum fusion result - with the same spectral resolution as the multispectral image and the same spatial resolution as the panchromatic image with minimum artifacts.

  • PDF

1D 통합된 근접차이에 기반한 자율적인 다중분광 영상 분할 (Unsupervised Multispectral Image Segmentation Based on 1D Combined Neighborhood Differences)

  • 뮤잠멜;윤병춘;김덕환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.625-628
    • /
    • 2010
  • This paper proposes a novel feature extraction method for unsupervised multispectral image segmentation based in one dimensional combined neighborhood differences (1D CND). In contrast with the original CND, which is applied with traditional image, 1D CND is computed on a single pixel with various bands. The proposed algorithm utilizes the sign of differences between bands of the pixel. The difference values are thresholded to form a binary codeword. A binomial factor is assigned to these codeword to form another unique value. These values are then grouped to construct the 1D CND feature image where is used in the unsupervised image segmentation. Various experiments using two LANDSAT multispectral images have been performed to evaluate the segmentation and classification accuracy of the proposed method. The result shows that 1D CND feature outperforms the spectral feature, with average classification accuracy of 87.55% whereas that of spectral feature is 55.81%.

멀티스펙트럴 재조명을 이용한 균일 조명 색상 보정 (Color Correction for Uniformity Illumination using Multispectral Relighting)

  • 심규동;박종일
    • 방송공학회논문지
    • /
    • 제22권2호
    • /
    • pp.207-213
    • /
    • 2017
  • 다수의 조명을 이용한 멀티스펙트럴 이미징을 정확히 수행하기 위해서는 영상 내 조명의 세기가 균일해야 한다. 멀티스펙트럴 이미징이 아니더라도 정확한 색 정보가 필요한 영상 획득에서는 조명이 정확해야 하고, 정확한 조명 특성을 위해 평면 광원을 사용하거나 조명 캘리브레이션을 수행한다. 본 논문에서는 조명의 세기가 균일하지 않은 영상을 조명의 세기가 균일하도록 색상을 보정하는 방법을 제안한다. 우선 비균일 조명에서 얻은 두 영상으로 멀티스펙트럴 이미징을 수행하여 반사 스펙트럼을 획득하고 획득한 반사 스펙트럼을 형광등이나 태양광과 같은 평면광에서 획득한 영상의 조명 특성으로 재조명한다. 재조명으로 얻은 영상과 평면광 영상의 조도 분포의 차이를 이용해서 비균일 조명 영상을 균일한 영상에서 획득한 영상처럼 색상 보정을 수행한다. 실험 결과로 조명의 비균일성이 균일하게 보정되었는지 확인하고, 이 결과를 통해 영상의 색 정보를 취득하는 데 조명의 제약사항을 줄일 수 있을 것으로 기대된다.

A Coherent Algorithm for Noise Revocation of Multispectral Images by Fast HD-NLM and its Method Noise Abatement

  • Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.556-564
    • /
    • 2021
  • Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.

영역별 대역간 양방향 예측과 확장된 SPIHT를 이용한 다분광 화상데이터의 압축 (Multispectral Image Compression Using Classified Interband Bidirectional Prediction and Extended SPHT)

  • 김승진;반성원;김병주;박경남;김영춘;이건일
    • 대한전자공학회논문지SP
    • /
    • 제39권5호
    • /
    • pp.486-493
    • /
    • 2002
  • 본 논문에서는 웨이블릿 영역에서 각 부밴드에 대한 영역별 대역간 양방향 예측과 확장된 SPIHT (set partition in hierarchical trees)를 이용한 효율적인 인공위성 다분광 화상데이터의 압축 방법을 제안하였다. 이 방법에서는 가시광선 영역과 적외선 영역에서 다른 대역과 분광적 상관성이 큰 대역을 기준대역 (feature band)으로 각각 결정하고, 이 대역들에 대해 웨이블릿 변환 (wavelet transform, WT)을 행한 후 SPIHT를 행하여 부호화함으로써 대역내 (intraband) 중복성을 제거한다. 기준대역과 대역간 상관성이 큰 예측대역 (prediction band)들에 대해서는 웨이블릿 변환을 행한 후, 각 대역의 기저밴드의 대역별 특성을 이용하여 영역분류를 하고, 각 부밴드에 대한 영역별 대역간 양방향 예측 (classified interband bidirec- tional prediction)을 행함으로써 대역간 (interband) 중복성을 제거하여 압축 효율을 향상시킨다. 또한 확장된 SPIHT의 부호화 효율을 높이기 위해 예측오차의 최대값에 따라 재배열된 대역들에 대해 확장된 SPIHT를 행하여 예측오차를 부호화함으로써, 예측에 따른 오차를 보상하여 화질을 향상시킨다. 실제 다분광 화상데이터에 대한 모의 실험을 통하여 제안한 방법의 부호화 효율이 기존의 방법에 비하여 우수함을 확인하였다.

농업관측을 위한 다중분광 무인기 반사율 변동성 분석 (Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring)

  • 안호용;나상일;박찬원;홍석영;소규호;이경도
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1379-1391
    • /
    • 2020
  • 농업에서의 무인기는 촬영 영역은 작지만, 위성이 가지지 못하는 초고해상도의 영상 수집이 가능하며, 작물의 생물계절에 맞는 영상을 적시에 획득 할 수 있어 들녘단위 농경지의 모니터링에 유용하게 사용될 수 있다. 하지만 무인기의 경우 위성과 달리 다양한 카메라와 촬영 환경에 따른 다중시기 영상을 활용하기 때문에 시계열 영상 활용을 위해서는 정규화 된 영상자료를 활용하는 것이 필수적으로 요구된다. 본 연구는 무인기 다중분광 영상의 농업 모니터링 시계열 활용을 위해 촬영 환경에 따른 무인기 반사율 및 식생지수의 변동성을 분석하였다. 촬영 고도, 촬영 방향, 촬영시간, 운량과 같은 환경요인에 따른 반사율 변동성은 8%에서 11%로 매우 크게 나타났으나, 식생지수의 변동성은 1% ~ 5%로 안정적인 것을 확인 할 수 있었다. 이러한 현상은 무인기 다중분광센서의 특성과 후처리 프로그램의 정규화 등 다양한 원인이 존재하는 것으로 판단된다. 따라서 무인기 영상의 시계열 활용을 위해서는 식생지수와 같은 밴드비율함수를 활용하는 것이 권장되며 촬영 시 가능한 동일한 촬영시간, 촬영 고도, 촬영 방향을 설정하여 시계열 영상의 변동성을 최소화하는 것이 권장된다.