• Title/Summary/Keyword: Multisensor Fusion

Search Result 41, Processing Time 0.026 seconds

MULTI-SENSOR INTEGRATION SYSTEM FOR FOREST FIRE PREVENTION

  • Kim Eun Hee;Chi Jeong Hee;Shon Ho Sun;Jung Doo Young;Lee Chung Ho;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.450-453
    • /
    • 2005
  • A forest fire occurs mainly as natural factor such as wind, temperature or human factor such as light. Recently, the most of forest fire prevention is prediction or prevision against forest fire by using remote sensing technology. However in order to forest fire prevention, the remote sensing has many limitations such as high cost and advanced technologies and so on. Therefore, we need to multisensor integration system that utilize not only remote sensing but also in-situ sensing in order to reduce large damage of forest fire though analysis of happen cause and prediction routing of occurred forest fire. In this paper we propose a multisensor integration system that offers prediction information of factors and route of forest fire by integrates collected data from remote sensor and in-situ sensor for forest fire prevention. The proposed system is based on wireless sensor network for collect observed data from various sensors. The proposed system not only offers great quality information because firstly, raw data level fuse different format of collected data from remote and in-situ sensor but also accomplish information level fusion based on result of first stage. Offered information from our system can help early prevention of factor and early prevision against occurred forest fire which transfer to SMS service or alert service into monitoring interface of administrator.

  • PDF

Design of Decentralized $H^\infty$ Filter using the Generalization of $H^\infty$ Filter in Indefinite Inner Product Spaces (부정 내적 공간에서의$H^\infty$ 필터의 일반화를 통한 분산 $H^\infty$ 필터의 설계)

  • Kim, Gyeong-Geun;Jin, Seung-Hui;Yun, Tae-Seong;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.735-746
    • /
    • 1999
  • We design the robust and inherently fault tolerant decetralized$$H^infty$$ filter for the multisensor state estimation problem when there are insufficient priori informations on the statistical properties of external disturbances. For developing the proposed algorithm, an alternative form of suboptimal$$H^infty$$ filter equations are formulated by applying an alternative form of Kalman filter equations to the indefinite inner product space state model of suboptimal$$H^infty$$ filtering problems. The decentralized$$H^infty$$ filter that consists of local and central fusion filters can be designed effciently using the proposed alternative$$H^infty$$ filiter gain equations. The proposed decentralized$$H^infty$$ filter is robust against un-known external disturbances since it bounds the maximum energy gain from the external disturbances to the estimation errors under the prescribed level$$r^2$$ in both local and central fusion filters and is also fault tolerant due to its inherent redundancy. In addition, the central fusion equations between the global and local data can reduce the unnecessary calculation burden effectively. Computer simulations are made to ceritfy the robustness and fault tolerance of the proposed algorithm.

  • PDF

Multisensor Data Combination Using Fuzzy Weighted Average (퍼지 가중 평균을 이용한 다중 센서 데이타 융합)

  • Kim, Wan-Joo;Ko, Joong-Hyup;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.383-386
    • /
    • 1993
  • In this paper, we propose a sensory data combination method by a fuzzy number approach for multisensor data fusion. Generally, the weighting of one sensory data with respect to another is derived from measures of the relative reliabilities of the two sensory modules. But the relative weight of two sensory data can be approximately determined through human experiences or insufficient experimental data without difficulty. We represent these relative weight using appropriate fuzzy numbers as well as sensory data itself. Using the relative weight, which is subjective valuation, and a fuzzy-numbered sensor data, the fuzzy weighted average method is used for a representative sensory data. The manipulation and calculation of fuzzy numbers can be carried out using the Zadeh's extension principle which can be approximately implemented by the $\alpha$-cut representation of fuzzy numbers and interval analysis.

  • PDF

Motion Estimation of 3D Planar Objects using Multi-Sensor Data Fusion (센서 융합을 이용한 움직이는 물체의 동작예측에 관한 연구)

  • Yang, Woo-Suk
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.57-70
    • /
    • 1996
  • Motion can be estimated continuously from each sensor through the analysis of the instantaneous states of an object. This paper is aimed to introduce a method to estimate the general 3D motion of a planar object from the instantaneous states of an object using multi-sensor data fusion. The instantaneous states of an object is estimated using the linear feedback estimation algorithm. The motion estimated from each sensor is fused to provide more accurate and reliable information about the motion of an unknown planar object. We present a fusion algorithm which combines averaging and deciding. With the assumption that the motion is smooth, the approach can handle the data sequences from multiple sensors with different sampling times. Simulation results show proposed algorithm is advantageous in terms of accuracy, speed, and versatility.

  • PDF

Uncertainty Fusion of Sensory Information Using Fuzzy Numbers

  • Park, Sangwook;Lee, C. S. George
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1001-1004
    • /
    • 1993
  • The Multisensor Fusion Problem (MFP) deals with the methodologies involved in effectively combining together homogeneous or non-homegeneous information obtained from multiple redundant or disparate sensors in order to perform a task more accurately, efficiently, and reliably. The inherent uncertainties in the sensory information are represented using Fuzzy Numbers, -numbers, and the Uncertainty-Reductive Fusion Technique (URFT) is introduced to combine the multiple sensory information into one consensus -number. The MFP is formulated from the Information Theory perspective where sensors are viewed as information sources with a fixed output alphabet and systems are modeled as a network of information processing and processing and propagating channels. The performance of the URFT is compared with other fusion techniques in solving the 3-Sensor Problem.

  • PDF

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Rao-Blackwellized Multiple Model Particle Filter Data Fusion algorithm (Rao-Blackwellized Multiple Model Particle Filter자료융합 알고리즘)

  • Kim, Do-Hyeung
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.556-561
    • /
    • 2011
  • It is generally known that particle filters can produce consistent target tracking performance in comparison to the Kalman filter for non-linear and non-Gaussian systems. In this paper, I propose a Rao-Blackwellized multiple model particle filter(RBMMPF) to enhance computational efficiency of the particle filters as well as to reduce sensitivity of modeling. Despite that the Rao-Blackwellized particle filter needs less particles than general particle filter, it has a similar tracking performance with a less computational load. Comparison results for performance is listed for the using single sensor information RBMMPF and using multisensor data fusion RBMMPF.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm (접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법)

  • 고동환;한헌수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 1998
  • This paper deals with a problem occuring in recognition of tactile images due to the effects of imposed force at a me urement moment. Tactile image of a contact surface, used for recognition of the surface type, varies depending on the forces imposed so that a false recognition may result in. This paper fuzzifies two parameters of the contour of a tactile image with the membership function formed by considering the imposed force. Two fuzzifed paramenters are fused by the average Minkowski's dist; lnce. The proposed algorithm was implemented on the multisensor system cnmposed of an optical tact le sensor and a 6 axes forceltorque sensor. By the experiments, the proposed algorithm has shown average recognition ratio greater than 869% over all imposed force ranges and object models which is about 14% enhancement comparing to the case where only the contour information is used. The pro- ~oseda lgorithm can be used for end-effectors manipulating a deformable or fragile objects or for recognition of 3D objects by implementing on multi-fingered robot hand.

  • PDF