• 제목/요약/키워드: Multiscale problems

검색결과 48건 처리시간 0.026초

An analysis of an elastic solid incorporating a crack under the influences of surface effects in plane & anti-plane deformations

  • Kim, Chun Il
    • Interaction and multiscale mechanics
    • /
    • 제4권2호
    • /
    • pp.123-137
    • /
    • 2011
  • We review a series of crack problems arising in the general deformations of a linearly elastic solid (Mode-I, Mode-II and Mode-III crack) and, perhaps more significantly, when the contribution of surface effects are taken into account. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. We show that the deformations of an elastic solid containing a single crack can be decoupled into in-plane (Mode-I and Mode-II crack) and anti-plane (Mode-III crack) parts, even when the surface mechanics is introduced. In particular, it is shown that, in contrast to classical fracture mechanics (where surface effects are neglected), the incorporation of surface elasticity leads to the more accurate description of a finite stress at the crack tip. In addition, the corresponding stress fields exhibit strong dependency on the size of crack.

Nonlocal finite element modeling of the tribological behavior of nano-structured materials

  • Mahmoud, F.F.;Meletis, E.I.
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.267-276
    • /
    • 2010
  • A nonlocal finite element model is developed for solving elasto-static frictional contact problems of nanostructures and nanoscale devices. A two dimensional Eringen-type nonlocal elasticity model is adopted. The material is characterized by a stress-strain constitutive relation of a convolution integral form whose kernel is capable to take into account both the diffusion process of nonlocal elasticity and the scale ratio effects. The incremental convex programming procedure is exploited as a solver. Two examples of different nature are presented, the first one presents the behavior of a nanoscale contacting system and the second example discusses the nano-indentation problem.

METALLIC INTERFACES IN HARSH CHEMO-MECHANICAL ENVIRONMENTS

  • Yildiz, Bilge;Nikiforova, Anna;Yip, Sidney
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.21-38
    • /
    • 2009
  • The use of multi scale modeling concepts and simulation techniques to study the destabilization of an ultrathin layer of oxide interface between a metal substrate and the surrounding environment is considered. Of particular interest are chemo-mechanical behavior of this interface in the context of a molecular-level description of stress corrosion cracking. Motivated by our previous molecular dynamics simulations of unit processes in materials strength and toughness, we examine the challenges of dealing with chemical reactivity on an equal footing with mechanical deformation, (a) understanding electron transfer processes using first-principles methods, (b) modeling cation transport and associated charged defect migration kinetics, and (c) simulation of pit nucleation and intergranular deformation to initiate the breakdown of the oxide interlayer. These problems illustrate a level of multi-scale complexity that would be practically impossible to attack by other means; they also point to a perspective framework that could guide future research in the broad computational science community.

Smart body armor inspired by flow in bone

  • Tate, Melissa Louise Knothe
    • Smart Structures and Systems
    • /
    • 제7권3호
    • /
    • pp.223-228
    • /
    • 2011
  • An understanding of biomaterials' smart properties and how biocomposite materials are manufactured by cells provides not only bio-inspiration for new classes of smart actuators and sensors but also foundational technology for smart materials and their manufacture. In this case study, I examine the unique smart properties of bone, which are evident at multiple length scales and how they provide inspiration for novel classes of mechanoactive materials. I then review potential approaches to engineer and manufacture bioinspired smart materials that can be applied to solve currently intractable problems such as the need for "smart" body armor or decor cum personal safety devices.

A coupled finite element/meshfreemoving boundary method for self-piercing riveting simulation

  • Cai, Wayne;Wang, Hui-Ping;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.257-270
    • /
    • 2013
  • The use of lightweight materials has been steadily increasing in the automotive industry, and presents new challenges to material joining. Among many joining processes, self-piercing riveting (SPR) is particularly promising for joining lightweight materials (such as aluminum alloys) and dissimilar materials (such as steel to Al, and metal to polymer). However, to establish a process window for optimal joint performance, it often requires a long trial-and-error testing of the SPR process. This is because current state of the art in numerical analysis still cannot effectively resolve the problems of severe material distortion and separation in the SPR simulation. This paper presents a coupled meshfree/finite element with a moving boundary algorithm to overcome these numerical difficulties. The simulation results are compared with physical measurements to demonstrate the effectiveness of the present method.

Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation

  • Wang, Dongdong;Xie, Pinkang;Lu, Hongsheng
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.107-125
    • /
    • 2013
  • A strain smoothing meshfree formulation with stabilized conforming nodal integration is presented for modeling the consolidation process in saturated porous media. In the present method, nodal strain smoothing is consistently introduced into the meshfree approximation of strain and pore pressure gradient variables associated with the saturated porous media. Meanwhile, in order to achieve a consistent numerical implementation, a smoothing approximation of the meshfree shape function within a nodal representative domain is also proposed in the stiffness construction. The resulting discrete system of equations is all expressed in smoothed nodal measures that are very efficient for numerical evaluation. Subsequently the space-time fully discrete equations are further established by the generalized trapezoidal rule for time integration. The effectiveness of the proposed meshfree consolidation analysis method is systematically illustrated by several benchmark problems.

Weak forms of generalized governing equations in theory of elasticity

  • Shi, G.;Tang, L.
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.329-337
    • /
    • 2008
  • This paper presents the derivation of the generalized governing equations in theory of elasticity, their weak forms and the some applications in the numerical analysis of structural mechanics. Unlike the differential equations in classical elasticity theory, the generalized equations of the equilibrium and compatibility equations presented here take the form of integral equations, and the generalized equilibrium equations contain the classical differential equations and the boundary conditions in a single equation. By using appropriate test functions, the weak forms of these generalized governing equations can be established. It can be shown that various variational principles in structural analysis are merely the special cases of these weak forms of generalized governing equations in elasticity. The present weak forms of elasticity equations extend greatly the choices of the trial functions for approximate solutions in the numerical analysis of various engineering problems. Therefore, the weak forms of generalized governing equations in elasticity provide a powerful modeling tool in the computational structural mechanics.

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

Surface elasticity and residual stress effect on the elastic field of a nanoscale elastic layer

  • Intarit, P.;Senjuntichai, T.;Rungamornrat, J.;Rajapakse, R.K.N.D.
    • Interaction and multiscale mechanics
    • /
    • 제4권2호
    • /
    • pp.85-105
    • /
    • 2011
  • The influence of surface elasticity and surface residual stress on the elastic field of an isotropic nanoscale elastic layer of finite thickness bonded to a rigid material base is considered by employing the Gurtin-Murdoch continuum theory of elastic material surfaces. The fundamental solutions corresponding to buried vertical and horizontal line loads are obtained by using Fourier integral transform techniques. Selected numerical results are presented for the cases of a finite elastic layer and a semi-infinite elastic medium to portray the influence of surface elasticity and residual surface stress on the bulk stress field. It is found that the bulk stress field depends significantly on both surface elastic constants and residual surface stress. The consideration of out-of-plane terms of the surface stress yields significantly different solutions compared to previous studies. The solutions presented in this study can be used to examine a variety of practical problems involving nanoscale/soft material systems and to develop boundary integral equations methods for such systems.

Origin of Multiple Conductance Peaks in Single-Molecule Junction Experiments

  • Park, Min Kyu;Kim, Hu Sung;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.654-654
    • /
    • 2013
  • One of the most important yet unresolved problems in molecular electronics is the controversy over the number and nature of multiple conductance peaks in single-molecule junctions. Currently, there are three competing explanations of this observation: (1) manifestation of different molecule-electrode contact geometries, (2) formation of gauche defects within the molecular core, (3) involvement of different electrode surface orientations [1]. However, the exact origin of multiple conductance peaks is not yet fully understood, which indicates our incomplete understanding of the scientifically as well as techno-logically important organic-metal contacts. To theoretically resolve this problem, we previously applied a multiscale computational approach that combines force fields molecular dynamics (FF MD), density functional theory (DFT), and matrix Green's function (MGF) calculations [2] to a thermally fluctuating haxanedithiol (C6DT) molecule stretched between flat Au(111) electrodes, but could observe only a single conductance peak [3]. In this presentation, using DFT geometry optimizations and MGF calculations, we consider molecular junctions with more realistic molecule-metal contact conformations and Au(111) electrode surface directions. We also conduct DFT-based molecular dynamics for the highly stretched junction models to confirm our conclusion. We conclude that the S-Au coordination number should be the more dominant factor than the electrode surface orientation.

  • PDF