Browse > Article
http://dx.doi.org/10.12989/imm.2013.6.2.107

Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation  

Wang, Dongdong (Department of Civil Engineering, Xiamen University)
Xie, Pinkang (Department of Civil Engineering, Xiamen University)
Lu, Hongsheng (Shanghai Hengstar Technology Co. Ltd.)
Publication Information
Interaction and multiscale mechanics / v.6, no.2, 2013 , pp. 107-125 More about this Journal
Abstract
A strain smoothing meshfree formulation with stabilized conforming nodal integration is presented for modeling the consolidation process in saturated porous media. In the present method, nodal strain smoothing is consistently introduced into the meshfree approximation of strain and pore pressure gradient variables associated with the saturated porous media. Meanwhile, in order to achieve a consistent numerical implementation, a smoothing approximation of the meshfree shape function within a nodal representative domain is also proposed in the stiffness construction. The resulting discrete system of equations is all expressed in smoothed nodal measures that are very efficient for numerical evaluation. Subsequently the space-time fully discrete equations are further established by the generalized trapezoidal rule for time integration. The effectiveness of the proposed meshfree consolidation analysis method is systematically illustrated by several benchmark problems.
Keywords
meshfree method; consolidation; saturated porous media; strain smoothing; stabilized conforming nodal integration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, D., Li, Z., Li, L. and Wu, Y. (2011), "Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium", Sci. China-Technol. Sci.,54(3), 573-580.   DOI   ScienceOn
2 Wang, D. and Lin, Z. (2011), "Dispersion and transient analyses of hermite reproducing kernel galerkinmeshfree method with sub-domain stabilized conforming integration for thin beam and plate structures", Comput. Mech., 48(1), 47-63.   DOI
3 Zienkiewicz, O.C. and Shiomi, T. (1984), "Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution", Int. J. Numer. Anal. Meth. Geom., 8(1), 71-96.   DOI   ScienceOn
4 Kaasschieter, E.F. and Frijns, A.J.H. (2003), "Squeezing a sponge: a three-dimensional a nalytical solution in poroelasticity", Comput. Geosci.,7(1), 49-59.   DOI
5 Korsawe, J., Starke, G., Wang, W. and Kolditz, O. (2006), "Finite element analysis of poro-elastic consolidation in porous media: Mixed and standard approaches", Math., 195(9-12), 1096-1115.
6 Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math.Comput.,37(155), 141-158.   DOI   ScienceOn
7 Murad, M. and Loula, A. (1992), "Improved accuracy in finite element analysis of Biot's consolidation problem", Comput.Meth. Appl. Mech. Eng., 95(3), 359-382.   DOI   ScienceOn
8 Li, S. and Liu, W.K. (2004), MeshfreeParticle Methods, Springer-Verlag.
9 Liu, G.R. (2009), Mesh Free Methods: Moving Beyond the Finite Element Mehod,2ndEdition, CRC Press.
10 Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J.Numer.Fluids, 20(8-9), 1081-1106.   DOI   ScienceOn
11 Samimi, S. and Pak, A. (2012), "Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method", Comput.Geotech.,46, 75-83.   DOI
12 Schonewald, A., Soares, D. and von Estorff, O. (2012), "A smoothed radial point interpolation method for application in porodynamics", Computat. Mech., 50(4), 433-443   DOI   ScienceOn
13 Wang, D. and Chen, J.S. (2004), "Locking-free stabilized conforming nodal integration for meshfreemindlin-reissner plate formulation", Comput. Meth. Appl. Mech. Eng., 193(12-14), 1065-1083.   DOI   ScienceOn
14 Wang, D. and Chen, J.S. (2008), "A Hermite reproducing kernel approximation for thin plate analysis with sub-domain stabilized conforming integration", Int. J. Numer. Meth. Eng., 74(3), 368-390.   DOI   ScienceOn
15 Chen, J.S., Chi, S.W. and Hu, H.Y. (2011), "Recent developments in stabilized Galerkin and collocation meshfree methods", Comput. Assist. Mech. Eng. Sci., 18, 3-21.
16 Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of nonlinear structures", Comput. Meth. Appl. Mech. Eng., 139(1-4), 195-227.   DOI   ScienceOn
17 Chen, J.S., Yoon, S. and Wu, C.T. (2002), "Nonlinear version of stabilized conforming nodal integration for Galerkinmeshfree methods", Int. J. Num. Meth. Eng., 53(12), 2587-2615.   DOI   ScienceOn
18 Chen, J.S. and Wang, D. (2006), "A constrained reproducing kernel particle formulation for shear deformable shell in cartesian coordinates", Int. J. Num. Meth. Eng., 68(2), 151-172.   DOI   ScienceOn
19 Chen, J.S., Wu, C.T. and Belytschko, T. (2000), "Regularization of material instabilities by meshfree approximations with intrinsic length scales", Int. J. Num. Meth. Eng., 47(7), 1301-1322.
20 Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkinmeshfree methods", Int. J. Num. Meth. Eng., 50(2), 435-466.   DOI   ScienceOn
21 Cheng, A.H.D. and Detournay, E. (1988), "A direct boundary element method for plane strain poro-elasticity", Int. J. Num. Anal.Meth.Geom., 12(5), 551-72.   DOI   ScienceOn
22 Cui, L., Cheng, A.H.D. and Kaliakin, V.N. (1996), "Finite element analyses of anisotropic poroelasticity: a generalized mandel's problem and an inclined borehole problem", Int. J. Numer. Anal. Meth. Geom., 20(6), 381-401.   DOI
23 Guan, P.C., Chi, S.W., Chen, J.S., Slawson, T.R. and Roth, M.J (2011), "Semi-lagrangian reproducing kernel particle method for fragment-impact problems", Int. J. Impact Eng., 38(12), 1033-1047.   DOI   ScienceOn
24 Hughes, T.J.R. (2000), The finite element method: linear static and dynamic finite element analysis, Dover publications,Mineola, NY.
25 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free gakerkin methods", Int. J. Num. Meth. Eng., 37(2), 229-256.   DOI   ScienceOn
26 Atluri, S.N. and Shen, S.P. (2002), The Meshless Local Petrov-GalerkinMethod, Tech Science Press.
27 Babuska, I., Banerjee, U. and Osborn, J.E. (2003), "Survey of meshless and generalized finite element methods: a unified approach", ActaNumer., 12(1), 1-125.
28 Beissl, S. and Belytschko, T. (1996), "Nodal integration of the element-free Galerkin method", Comput.Meth.Appl. Mech. Eng., 139(1-4), 49-64.   DOI   ScienceOn
29 Biot, M.A. (1941), "General theory of three-dimensional consolidation", J.Appl. Phys., 12(2), 155-169.   DOI
30 Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid, I: Low-frequency-range", J. Acout. Soc. Ame., 28(2), 168-178.   DOI