• Title/Summary/Keyword: Multiscale Model

Search Result 179, Processing Time 0.017 seconds

The influence of different support movements and heights of piers on the dynamic behavior of bridges -Part I: Earthquake acting transversely to the deck

  • Michaltsos, George T.;Raftoyiannis, Ioannis G.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.431-454
    • /
    • 2009
  • This paper presents a simple model for studying the dynamic response of multi-span bridges resting on piers with different heights and subjected to earthquake forces acting transversely to the bridge, but varying spatially along its length. The analysis is carried out using the modal superposition technique, while the solution of the resulting integral-differential equations is obtained via the Laplace transformation. It has been found that the piers' height and the quality of the foundation soil can affect significantly the dynamic behavior of such bridges. Typical examples showing the effectiveness of the method are presented with useful results listed.

Estimation of longitudinal velocity noise for rail wheelset adhesion and error level

  • Soomro, Zulfiqar Ali
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.3
    • /
    • pp.261-270
    • /
    • 2016
  • The longitudinal velocity (forward speed) having significant importance in proper running of railway wheelset on track, depends greatly upon the adhesion ratio and creep analysis by implementation of suitable dynamic system on contamination. The wet track condition causes slip and slide of vehicle on railway tracking, whereas high speed may also increase slip and skidding to severe wear and deterioration of mechanical parts. The basic aim of this research is to design appropriate model aimed estimator that can be used to control railway vehicle forward velocity to avoid slip. For the filtration of disturbance procured during running of vehicle, the kalman filter is applied to estimate the actual signal on preferered samples of creep co-efficient for observing the applied attitude of noise. Thus error level is detected on higher and lower co-efficient of creep to analyze adhesion to avoid slip and sliding. The skidding is usually occurred due to higher forward speed owing to procured disturbance. This paper guides to minimize the noise and error based upon creep coefficient.

MULTISCALE MODELLING FOR THE FISSION GAS BEHAVIOUR IN THE TRANSURANUS CODE

  • Van Uffelen, P.;Pastore, G.;Di Marcello, V.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.477-488
    • /
    • 2011
  • A formulation is proposed for modelling the process of intra-granular diffusion of fission gas during irradiation of $UO_2$ under both normal operating conditions and power transients. The concept represents a simple extension of the formulation of Speight, including an estimation of the contribution of bubble motion to fission gas diffusion. The resulting equation is formally identical to the diffusion equation adopted in most models that are based on the formulation of Speight, therefore retaining the advantages in terms of simplicity of the mathematical-numerical treatment and allowing application in integral fuel performance codes. The development of the new model proposed here relies on results obtained by means of molecular dynamics simulations as well as finite element computations. The formulation is proposed for incorporation in the TRANSURANUS fuel performance code.

An asymptotic multi-scale approach for beams via strain gradient elasticity: surface effects

  • Kim, Jun-Sik
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.15-33
    • /
    • 2016
  • In this paper, an asymptotic method is employed to formulate nano- or micro-beams based on strain gradient elasticity. Although a basic theory for the strain gradient elasticity has been well established in literature, a systematic approach is relatively rare because of its complexity and ambiguity of higher-order elasticity coefficients. In order to systematically identify the strain gradient effect, an asymptotic approach is adopted by introducing the small parameter which represents the beam geometric slenderness and/or the internal atomistic characteristic. The approach allows us to systematically split the two-dimensional strain gradient elasticity into the microscopic one-dimensional through-the-thickness analysis and the macroscopic one-dimensional beam analysis. The first-order beam problem turns out to be different from the classical elasticity in terms of the bending stiffness, which comes from the through-the-thickness strain gradient effect. This subsequently affects the second-order transverse shear stress in which the surface shear stress exists. It is demonstrated that a careful derivation of a first strain gradient elasticity embraces "Gurtin-Murdoch traction" as the surface effect of a one-dimensional Euler-Bernoulli-like beam model.

Modeling large underground structures in rock formations

  • e Sousa, Luis Ribeiro;Miranda, Tiago
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-64
    • /
    • 2011
  • A methodology for jointed rock mass characterization starts with a research based on geological data and tests in order to define the geotechnical models used to support the decision about location, orientation and shape of cavities. Afterwards a more detailed characterization of the rock mass is performed allowing the update of the geomechanical parameters defined in the previous stage. The observed results can be also used to re-evaluate the geotechnical model using inverse methodologies. Cases of large underground structures modeling are presented. The first case concerns the modeling of cavities in volcanic formations. Then, an application to a large station from the Metro do Porto project developed in heterogeneous granite formations is also presented. Finally, the last case concerns the modeling of large cavities for a hydroelectric powerhouse complex. The finite element method and finite difference method software used is acquired from Rocscience and ITASCA, respectively.

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.

A ResNet based multiscale feature extraction for classifying multi-variate medical time series

  • Zhu, Junke;Sun, Le;Wang, Yilin;Subramani, Sudha;Peng, Dandan;Nicolas, Shangwe Charmant
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1431-1445
    • /
    • 2022
  • We construct a deep neural network model named ECGResNet. This model can diagnosis diseases based on 12-lead ECG data of eight common cardiovascular diseases with a high accuracy. We chose the 16 Blocks of ResNet50 as the main body of the model and added the Squeeze-and-Excitation module to learn the data information between channels adaptively. We modified the first convolutional layer of ResNet50 which has a convolutional kernel of 7 to a superposition of convolutional kernels of 8 and 16 as our feature extraction method. This way allows the model to focus on the overall trend of the ECG signal while also noticing subtle changes. The model further improves the accuracy of cardiovascular and cerebrovascular disease classification by using a fully connected layer that integrates factors such as gender and age. The ECGResNet model adds Dropout layers to both the residual block and SE module of ResNet50, further avoiding the phenomenon of model overfitting. The model was eventually trained using a five-fold cross-validation and Flooding training method, with an accuracy of 95% on the test set and an F1-score of 0.841.We design a new deep neural network, innovate a multi-scale feature extraction method, and apply the SE module to extract features of ECG data.

Evaluation of the Effect of Regional Pollutants and Residual Ozone on Ozone Concentrations in the Morning in the Inland of the Kanto Region

  • Kiriyama, Yusuke;Shimadera, Hikari;Itahashi, Syuichi;Hayami, Hiroshi;Miura, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Increasing ozone concentrations are observed over Japan from year to year. One cause of high ozone concentration in the Kanto region, which includes areas inland from large coastal cities such as metropolitan Tokyo, is the transportation of precursors by sea breezes. However, high ozone concentrations are also observed in the morning, before sea breezes approach inland areas. In this point, there would be a possibility of residual ozone existing above the nocturnal boundary layer affects the ozone concentration in the following morning. In this study, we utilized the Weather Research and Forecasting model and the Community Multiscale Air Quality model to evaluate the effect of regional precursors and residual ozone on ozone concentrations over the inland Kanto region. The results show that precursors emitted from non-metropolitan areas affected inland ozone concentrations more than did precursors from metropolitan areas. Moreover, calculated results indicate downward transportation of residual ozone, resulting in increased concentration. The residual ozone was also affected by precursors emitted from non-metropolitan areas.

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.

Assessing the Health Benefits of the Seoul Air Quality Management Plan Using BenMAP

  • Park, Jeong-Im;Bae, Hyun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.571-577
    • /
    • 2006
  • Health benefits from implementing air quality control measures were assessed using the Environmental Benefits Mapping and Analysis Program (BenMAP). BenMAP developed by US EPA is a GIS-based software tool that estimates the health impacts and associated economic values connected with changes in ambient air pollution. Once a set of BenMAP-required data was collected, the health benefits from implementing Seoul Air Quality Management Plan (SAQMP), an official AQ improvement plan for Seoul Metropolitan Area, was assessed using BenMAP. The PM10 concentrations assuming the SAQMP implemented successfully were predicted with the MM5 (Mesoscale Meteorological model version 5)/CMAQ (Community Multiscale Air Quality) model. A PM 10 exposure related premature mortality function was adopted trom a well-known epidemiology study. Economic valuation functions driven from benefit transfer methods were utilized. Through the SAQMP, PM10 concentrations were estimated to be lowered by $15{\mu}g/m^3\;to\;75{\mu}g/m^3$ depending on air quality modeling grids. 5,569 premature deaths (95% CI $3,264{\sim}7,809$ deaths) could be avoided in the Seoul Metropolitan Area. The economic value of the deaths avoided was estimated to $13.2 billion $(95%\;CI\;$890\;million{\sim}$28.2\;billion)$ using the benefit transfer value. BenMAP could be a useful tool for developing effective air quality improvement policy, enabling the policy makers to anticipate the effects of regulatory changes on people's health and the economy.