• Title/Summary/Keyword: Multiple-ship situations

Search Result 8, Processing Time 0.024 seconds

Analysis of a Distributed Stochastic Search Algorithm for Ship Collision Avoidance (선박 충돌 방지를 위한 분산 확률 탐색 알고리즘의 분석)

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • It is very important to understand the intention of a target ship to prevent collisions in multiple-ship situations. However, considering the intentions of a large number of ships at the same time is a great burden for the officer who must establish a collision avoidance plan. With a distributed algorithm, a ship can exchange information with a large number of target ships and search for a safe course. In this paper, I have applied a Distributed Stochastic Search Algorithm (DSSA), a distributed algorithm, for ship collision avoidance. A ship chooses the course that offers the greatest cost reduction or keeps its current course according to probability and constraints. DSSA is divided into five types according to the probability and constraints mentioned. In this paper, the five types of DSSA are applied for ship collision avoidance, and the effects on ship collision avoidance are analyzed. In addition, I have investigated which DSSA type is most suitable for collision avoidance. The experimental results show that the DSSA-A and B schemes offered effective ship collision avoidance. This algorithm is expected to be applicable for ship collision avoidance in a distributed system.

A Study on Collision Avoidance Action in the Situation of Encountering Multiple Ships by the Reserve Officer

  • Park, Deuk-Jin;Yim, Jeong-Bin;Yang, Hyeong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.346-351
    • /
    • 2018
  • The proportion of collision in the total marine accidents is high. The main causes of collisions are navigation rule violation, safety speed violation, neglected watch-keeping and improper collision avoidance action. There are two main ways of avoiding collision situations during maritime navigation: the method of altering course and reducing ship's speed. The purpose of this study is to analyze the result of the collision avoidance action of the reserve officer in case of encountering a multiple number of ships using the ship handling simulator. Full-mission ship handling simulator was used to experiment the situation scenarios that encountered multiple ships. After the experiment, the questionnaire about the experiment was investigated. A total of 50 subjects were participated in the experiment. Experimental results showed that the number of the experimenters who used the engine was 11 and the number of the experimenters who did not use the engine was 39. In the case of using the engine, there were 0 collision accident, 1 grounding accident, and 10 no accidents. However, when the engine was not used, there were 28 collision accidents, 2 grounding accidents, and 9 no accidents. The causes of these results can be found in the survey results. 74 % of the non used engine participants said they were hesitate to use the engine. As can be seen from these results, the reserve officer are hesitant to use the engine and need a way to get correct of it. Maritime course subject can emphasize the importance of using ship's engines and case study also can be it. So, It is considered that various case study scenario will need to developed by various tools in the future.

A Study on Cost Function of Distributed Stochastic Search Algorithm for Ship Collision Avoidance (선박 간 충돌 방지를 위한 분산 확률 탐색 알고리즘의 비용 함수에 관한 연구)

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.178-188
    • /
    • 2019
  • When using a distributed system, it is very important to know the intention of a target ship in order to prevent collisions. The action taken by a certain ship for collision avoidance and the action of the target ship it intends to avoid influence each other. However, it is difficult to establish a collision avoidance plan in consideration of multiple-ship situations for this reason. To solve this problem, a Distributed Stochastic Search Algorithm (DSSA) has been proposed. A DSSA searches for a course that can most reduce cost through repeated information exchange with target ships, and then indicates whether the current course should be maintained or a new course should be chosen according to probability and constraints. However, it has not been proven how the parameters used in DSSA affect collision avoidance actions. Therefore, in this paper, I have investigated the effect of the parameters and weight factors of DSSA. Experiments were conducted by combining parameters (time window, safe domain, detection range) and weight factors for encounters of two ships in head-on, crossing, and overtaking situations. A total of 24,000 experiments were conducted: 8,000 iterations for each situation. As a result, no collision occurred in any experiment conducted using DSSA. Costs have been shown to increase if a ship gives a large weight to its destination, i.e., takes selfish behavior. The more lasting the expected position of the target ship, the smaller the sailing distance and the number of message exchanges. The larger the detection range, the safer the interaction.

Development of Resistance Prediction Method for the Effect of Drifting Angle at the Towing Operation of a Disabled Ship (사고선박 예인시 표류각 영향에 대한 저항 추정법 개발)

  • Kim, Eun-Chan;Choi, Hyuek-Jin;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.298-303
    • /
    • 2015
  • When a disabled ship is being towed in a seaway, the resistance increase of the towed ship caused by both the external conditions such as wave and wind and the hull conditions such as drifting angle, should be accurately predicted. Most of the disabled ships cannot be towed in the front direction of hull, but they are usually towed in drifted direction with some drifting angle. In this sense, the resistance increase caused by the drifting angle is not an element to be ignored. In this paper, various methods for prediction of the resistance increase caused by the drifting angle are studied. In addition, new prediction methods such as front-lateral projected ratio method and empirical formula method by multiple regression analysis have been derived. The front-lateral projected area ratio method has been applied to a computer program for prediction of the towing condition, and this method has been approved to be a useful method in practical situations.

Smart Escape Support System for Passenger Ship : Active Dynamic Signage & Real-time Escape Routing (능동형 피난유도기기와 실시간 피난경로생성 기술을 적용한 여객선 스마트 인명대피 시스템)

  • Choi, James;Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.79-85
    • /
    • 2017
  • It is critical that passengers should be given timely and correct escape or evacuation guidance from captain and crews when there are hazardous situations in a ship. Otherwise the consequences could be disastrous as "SEWOL Ferry" the South Korean passenger ship which sank in southern coastal area on 16th April 2014. Due to the captain's delayed evacuation decision and lack of sufficient number of crews to guide passengers' evacuation, the accident recorded many casualties, most of whom were high school students (302 passengers sank down with the ship while 172 rescued). Building a passenger ship with well-designed physical escape routes is one thing and guiding passengers to those escape routes in real disaster situation is another. Passengers get panic and move to a wrong direction, bottleneck makes situation worse, and even crews get panic also - passive static escape route signage and small number of trained crews might not be enough to take care of them. SESS (Smart Escape Support System) is being developed sponsored by South Korea Ministry of Ocean and Fisheries starting from 2016 with 4 years of roadmap. SESS comprises multiple active dynamic signage devices which communicate with real-time escape routing server software via LoRa (Long Range) proprietary wireless network.

  • PDF

Searching for an Intra-block Remarshalling Plan for Multiple Transfer Cranes (복수 트랜스퍼 크레인을 활용하는 블록 내 재정돈 계획 탐색)

  • Oh Myung-Seob;Kang Jae-Ho;Ryu Kwang-Ryel;Kim Kap-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.7
    • /
    • pp.624-635
    • /
    • 2006
  • This paper applies simulated annealing algorithm to the problem of generating a plan for intra-block remarshalling with multiple transfer cranes. Intra-block remarshalling refers to the task of rearranging containers scattered around within a block into certain designated target areas of the block so that they can be efficiently loaded onto a ship. In generating a remarshalling plan, the predetermined container loading sequence should be considered carefully to avoid re-handlings that may delay the loading operations. In addition, the required time for the remarshalling operation itself should be minimized. A candidate solution in our search space specifies target locations of the containers to be rearranged. A candidate solution is evaluated by deriving a container moving plan and estimating the time needed to execute the plan using two cranes with minimum interference. Simulation experiments have shown that our method can generate efficient remarshalling plans in various situations.

A Study on the Influence of the Navigator's Personal Characteristics on the Perceived Collision Risk in Close-quarter Situations (선박 근접상황에서 항해사의 인적특성요인이 지각한 충돌위험도에 미치는 영향에 관한 연구)

  • Kim, Do-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.644-655
    • /
    • 2020
  • This study focuses on the margin of human error when a navigator is embarrassed by the psychological fear of collision in a close-quarter situation (CQS) and is unable to perform as per the prescribed collision avoidance measures. The purpose of the study is to identify the effects of the navigator's personal characteristics or factors in relation to on-board career (OC), license rating (LR), and age on the perceived collision risk (PCR) in CQSs. In order to obtain quantified data regarding the collision risk perceived by the navigator in four typical CQSs between their own ship and a target ship, this study measured and collated the heart rate variability of 30 navigators on their own ship when two ships approached each other at a speed of 10 knots from 2.5 nautical miles to a collision situation. According to a multiple regression analysis of the measured values, the navigators' OC and LR factors had negative effects on the PCR, while the age factor had no significant effect on PCR. The t-test results showed that the PCR value was significantly higher for navigators with an OC ≤ 4 years than for those with an OC ≥ 5 years, and the LR factor was significantly higher for a class 4~6 group than for a class 2~3. This finding may be applied to the development of collision risk warning systems, particularly for navigators.

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.