• Title/Summary/Keyword: Multiple-input multiple-output MIMO

Search Result 672, Processing Time 0.039 seconds

Low-Complexity Block Diagonalization Precoder Hardware Implementation for MU-MIMO 4×4

  • Khai, Lam Duc
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this paper, we present the block diagonalization (BD) algorithm for the multiple-user multiple input multiple output (MU-MIMO) $4{\times}4$ system using specific purpose processor (SPP) hardware. Our objective is to improve the single-user MIMO (SU-MIMO) system using the MU-MIMO technology, which is remarkably fast and allows more users to connect simultaneously. To that end, our MU-MIMO precoder uses the BD algorithm to ensure signal integrity when connecting multiple users; but remains accurate and stable. However, a precoder that uses the BD algorithm is computationally complex; therefore, we use an SPP with special functions designed to compute the BD algorithm. The implementation test results show that our SPP computes the BD algorithm faster than the software solution.

Survey on MIMO Full-Duplex (MIMO Full-Duplex 기술 동향)

  • Yang, Hyun Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1286-1292
    • /
    • 2015
  • In this paper, a multi-input multi-output (MIMO) full-duplex system is addressed, where both the transmitter and receiver have multiple antennas. Fundamental problems of the MIMO full-duplex technique are discussed, and possible solutions are presented. In particular, the transceiver designs that have been reported in the literature are technically reviewed, and their problems are discussed investigating the feasibility of the full-duplex technique in commercialized systems such as LTE and WiFi.

An Adaptive Signal Transmission/Reception Scheme for Spectral Efficiency Improvement of Multiple Antenna Systems in Cellular Environments (셀룰러 환경에서 다중 안테나 시스템의 전송 효율 증대를 위한 적응적 송수신 방안)

  • Jin, Gwy-Un;Kim, Seong-Min;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.429-437
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) techniques can be used for the spectral efficiency enhancement of the cellular systems, which can be categorized into spatial multiplexing (SM) and spatial diversity schemes. MIMO systems suffer a severe performance degradation due to the intercell interference from the adjacent cells as the mobile terminal moves toward the cell boundary. Therefore for the spectral efficiency enhancement, an appropriate transmission scheme for the given channel environment and reception scheme which can mitigate the intercell interference are required. In this paper, we propose an adaptive signal transmission/reception scheme for the spectral efficiency improvement of $M_R{\times}M_T$ MIMO systems, present the decision criteria for the adaptive operation of the proposed scheme, and demonstrate the performance gain. The proposed scheme performs adaptive transmission using spatial multiplexing and spatial diversity, and adaptive reception using maximal ratio combining (MRC) and intercell spatial demultiplexing (ISD) when the spatial diversity transmission is used at the transmitter. Spatial multiplexing/demultiplexing is performed at the high signal-to-interference ratio (SIR) range, and the transmit diversity in conjunction with the adaptive reception uses either conventional MRC or ISD which can mitigate the $M_R-1$ interference signals, based on the mobile location. For the performance evaluation of the proposed adaptive scheme, the probability density function (pdf) of the effective SIR for the transmission/reception methods in consideration are derived for $M_R{\times}M_T$ MIMO systems. Using the results, the average effective SIR and spectral efficiency are presented and compared with simulation results.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

A Comparison of TDMA, Dirty Paper Coding, and Beamforming for Multiuser MIMO Relay Networks

  • Li, Jianing;Zhang, Jianhua;Zhang, Yu;Zhang, Ping
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • A two-hop multiple-input multiple-output (MIMO) relay network which comprises a multiple antenna source, an amplify-and-forward MIMO relay and many potential users are studied in this paper. Consider the achievable sum rate as the performance metric, a joint design method for the processing units of the BS and relay node is proposed. The optimal structures are given, which decompose the multiuser MIMO relay channel into several parallel single-input single-output relay channels. With these structures, the signal-to-noise ratio at the destination users is derived; and the power allocation is proved to be a convex problem. We also show that high sum rate can be achieved by pairing each link according to its magnitude. The sum rate of three broadcast strategies, time division multiple access (TDMA) to the strongest user, dirty paper coding (DPC), and beamforming (BF) are investigated. The sum rate bounds of these strategies and the sum capacity (achieved by DPC) gain over TDMA and BF are given. With these results, it can be easily obtained that how far away TDMA and BF are from being optimal in terms of the achievable sum rate.

Optimal Pilot Sequence Design based on Chu sequences for Multi-cell Environments (다중 기지국 환경에서의 MIMO-OFDM 시스템을 위한 최적 파일럿 시퀀스 설계 방법)

  • Kang, Jae-Won;Rhee, Du-Ho;Byun, Il-Mu;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1113-1121
    • /
    • 2009
  • In this paper, the channel estimation and pilot sequence design technique of multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in multi-cell environments are studied for situations in which the inter cell interference (ICI) is the dominant channel impairment. We design pilot sequence aiming at minimizing mean square error and propose the channel estimation technique correspond to the designed pilot sequences. The proposed pilot sequences employ the sequences with good correlation properties such as Chu sequence and through simulations, it is shown that channel estimation algorithm using designed pilot sequence is effective for mitigating the ICI.

Optimal Number of Users in Zero-Forcing Based Multiuser MIMO Systems with Large Number of Antennas

  • Jung, Minchae;Kim, Younsun;Lee, Juho;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.362-369
    • /
    • 2013
  • The optimal number of users achieving the maximum sum throughput is analyzed in zero-forcing (ZF) based multiuser multiple-input multiple-output (MIMO) systems with a large number of base station (BS) antennas. By utilizing deterministic ergodic sum rates for the ZF-beam forming (ZF-BF) and ZF-receiver (ZF-R) with a large number of BS antennas [1], [2], we can obtain the ergodic sum throughputs for the ZF-BF and ZF-R for the uplink and downlink frame structures, respectively. Then, we can also formulate and solve the optimization problems maximizing the ergodic sum throughputs with respect to the number of users. This paper shows that the approximate downlink sum throughput for the ZF-BF is a concave function and the approximate uplink sum throughput for the ZF-R is also a concave function in a feasible range with respect to the number of users. The simulation results verify the analyses and show that the derived numbers of users provide the maximum sum throughputs for the ZF-BF as well as ZF-R in multiuser MIMO systems with a large number of BS antennas.

A New Subspace Search-based Method for MIMO Systems (MIMO 시스템에서 부분 검색 공간 기반의 검파기법)

  • Nam, Sang-Ho;Ko, Kyun-Byoung;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.25-32
    • /
    • 2011
  • In this paper, we propose a subspace search-based detector (SSD) with low-complexity to achieve near optimal performance for multiple-input multiple-output systems. As an effective solution to reduce the prohibitive computational complexity of the optimal maximum likelihood detector, a partial candidate symbol vector is generated through a partitioned search space but not the entire search space. In addition, based on a partial candidate symbol vector, an ensemble candidate symbol vector generation considering the whole search space is introduced to produce a near optimal solution. As a result, the proposed SSD achieves near-maximum-likelihood performance while having a significantly reduced computational complexity.

Multi-Stage Turbo Equalization for MIMO Systems with Hybrid ARQ

  • Park, Sangjoon;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.333-339
    • /
    • 2016
  • A multi-stage turbo equalization scheme based on the bit-level combining (BLC) is proposed for multiple-input multiple-output (MIMO) systems with hybrid automatic repeat request (HARQ). In the proposed multi-stage turbo equalization scheme, the minimum mean-square-error equalizer at each iteration calculates the extrinsic log-likelihood ratios for the transmitted bits in a subpacket and the subpackets are sequentially replaced at each iteration according to the HARQ rounds of received subpackets. Therefore, a number of iterations are executed for different subpackets received at several HARQ rounds, and the transmitted bits received at the previous HARQ rounds as well as the current HARQ round can be estimated from the combined information up to the current HARQ round. In addition, the proposed multi-stage turbo equalization scheme has the same computational complexity as the conventional bit-level combining based turbo equalization scheme. Simulation results show that the proposed multi-stage turbo equalization scheme outperforms the conventional BLC based turbo equalization scheme for MIMO systems with HARQ.

Reconfigurable Intelligent Surface assisted massive MIMO systems based on phase shift optimization

  • Xuemei Bai;Congcong Hou;Chenjie Zhang;Hanping Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.2027-2046
    • /
    • 2024
  • Reconfigurable Intelligent Surface (RIS) is an innovative technique to precisely control the phase of incident signals with the help of low-cost passive reflective elements. It shows excellent potential in the sixth generation of mobile communication systems, which not only extends wireless coverage but also boosts channel capacity. Considering that multipath propagation and a high number of antennas are involved in RIS in assisted mega multiple-input multiple-output (MIMO) systems, it suffers from severe channel fading and multipath effects, which in turn lead to signal instability and degradation of transmission performance. To overcome this obstacle, this essay suggests an improved gradient optimization algorithm to dynamically and optimally adjust the phase of the reflective elements to counteract channel fading and multipath effects as a strategy. In order to overcome the optimization problem of falling into local minima, this paper proposes an adaptive learning rate algorithm based on Adagrad improvement, which searches for the global optimal solution more efficiently and improves the robustness of the optimization algorithm. The suggested technique helps to enhance the estimate of channel efficiency of RIS-assisted large MIMO systems, according to simulation results.