• Title/Summary/Keyword: Multiple user interference

Search Result 293, Processing Time 0.021 seconds

Optimal Inter-Element Spacing of FD-MIMO Planar Array in Urban Macrocell with Elevation Channel Modelling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4759-4780
    • /
    • 2017
  • Full Dimension multiple input multiple output (FD-MIMO) architecture employs a planar array design at the Base Station (BS) to provide high order multi-user MIMO (MU-MIMO) via simultaneous data transmission to large number of users. With FD-MIMO, the BS can also adjust the beam direction in both elevation and azimuth direction to concentrate the energy on the user of interests while minimizing the interference leakage to co-scheduled users in the same cell or users in the neighboring cells. In a typical highly populated macrocell environment, modelling the elevation angular characteristics of three-dimensional (3D) channel is critical to understanding the performance limits of the FD-MIMO system. In this paper, we study the throughput performance of FD-MIMO system with varying elevation angular spread and inter-element spacing using a 3D spatial channel model. Our results show that for a typical urban scenario, horizontal beamforming with correlated antenna spacing achieves optimal performance but by restricting the spread of elevation angles of departure, elevation beamforming achieves high array gain with wide inter-element spacing. We also realize significant gains due to spatial array processing via modelling the elevation domain and varying the inter-element spacing for both the transmitter and receiver.

Novel Multiple Access Schemes for IEEE 802.15.4a Low-rate Ultra-wide Band Systems

  • Zhang, Hong;Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.682-687
    • /
    • 2010
  • The IEEE 802.15.4a specification targets the low-rate (LR) Impulse-radio (IR) ultra-wideband (UWB) system which is now widely applied in the WPANs considering rather short distance communications with low complexity and power consumption. The physical (PHY) layer uses concatenated coding with mixed binary phase-shift keying and binary pulse-position modulation (BPSK-BPPM), and direct sequence spreading with time hopping in order that both coherent and non-coherent receiver architectures are supported. In this paper, the performances of multiple access schemes compliant with IEEE 802.15.4a specification are investigated with energy detection receiver, which allow avoiding the complex channel estimation needed by a coherent receiver. However, the performance of energy detection receiver is severely degraded by multi-user interference (MUI), which largely diminishes one of the most fascinating advantages of UWB, namely robustness to MUI as well as the possibility to allow parallel transmissions. So as to improve the performance of multiple access schemes, we propose to apply the novel TH sequences as well as to increase the number of TH positions. The simulation results show that our novel multiple access schemes significantly improve the performance against MUI.

Optimal User Density and Power Allocation for Device-to-Device Communication Underlaying Cellular Networks

  • Yang, Yang;Liu, Ziyang;Min, Boao;Peng, Tao;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.483-503
    • /
    • 2015
  • This paper analyzes the optimal user density and power allocation for Device-to-Device (D2D) communication underlaying cellular networks on multiple bands with the target of maximizing the D2D transmission capacity. The entire network is modeled by Poisson point process (PPP) which based on stochastic geometry. Then in order to ensure the outage probabilities of both cellular and D2D communication, a sum capacity optimization problem for D2D system on multiple bands is proposed. Using convex optimization, the optimal D2D density is obtained in closed-form when the D2D transmission power is determined. Next the optimal D2D transmission power is obtained in closed-form when the D2D density is fixed. Based on the former two conclusions, an iterative algorithm for the optimal D2D density and power allocation on multiple bands is proposed. Finally, the simulation results not only demonstrate the D2D performance, density and power on each band are constrained by cellular communication as well as the interference of the entire system, but also verifies the superiority of the proposed algorithm over sorting-based and removal algorithms.

Performance of UWB Systems using Spatial Diversity in Multi-User Environments (다중사용자 환경에서 공간적인 다이버시티를 이용하는 초광대역 통신시스템의 성능 비교분석)

  • Baek, Sun-Young;An, Jin-Young;Lee, Sung-Sin;Kim, Sang-Choon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.321-324
    • /
    • 2007
  • In this paper, the performance improvement of ultra-wideband (UWB) communications system to achieve high-data-rate using spatial diversity provided by multiple receive antennas is investigated. We derive the expression for the received SINR after spatially combining through multiple receive antennas and evaluate the bit error rate (BER) performance by numerical simulation. We also compare the performance results in the case of 2PPM systems with the theoretical performance results in the case of 2PAM THMA UWB systems. The impacts of spatial diversity on the performance of 2PPM and 2PAM THMA UWB systems are analyzed. It is shown that the BER performance is improved as the number of receive antennas increases. Also, it is observed that in the presence of multiple user interference signals, the performance of 2PAM THMA UWB systems is considerably superior to that of 2PPM THMA UWB systems.

  • PDF

Performance of UWB Systems using Spatial Diversity in Multi-User Environments (다중사용자 환경에서 공간적인 다이버시티를 이용하는 초광대역 통신시스템의 성능 비교분석)

  • Baek, Sun-Young;An, Jin-Young;Lee, Sung-Sin;Kim, Sang-Choon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2121-2126
    • /
    • 2007
  • In this paper, the performance improvement of ultra-wideband(UWB) communications system to achieve high-data-rate using spatial diversity provided by multiple receive antennas is investigated. We derive the expression for the received SINR after spatially combining through multiple receive antennas and evaluate the bit error rate(BER) performance by numerical simulation. We also compare the performance results in the case of 2PPM systems with the theoretical performance results in the case of 2PAM THMA UWB systems. The impacts of spatial diversity on the performance of 2PPM and 2PAM THMA UWB systems are analyzed. It is shown that the BER performance is improved as the number of receive antennas increases. Also, it is observed that in the presence of multiple user interference signals, the performance of 2PAM THMA UWB systems is considerably superior to that of 2PPM THMA UWB systems.

Performance Analysis of Amplify and Forward (AF)-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • Cognitive radio has been recently considered a promising technology to improve spectrum utilization by enabling secondary access to licensed bands that are not used by primary users temporarily or spatially. A prerequisite to this secondary access is the lack of interference to the primary system. This requirement makes spectrum sensing a key process for cognitive radio. In this study, we consider amplify and forward (AF)-based cooperative spectrum sensing for cognitive radio networks where multiple relay nodes are utilized to amplify and forward the primary user signal for better spectrum sensing, and maximum ratio combining is used for fusion detection by a cognitive coordinator. Further, the detection probability and the bit error rate of AF-based cooperative spectrum sensing are analyzed in fading multiple cognitive relay channels. The simulation results show that the AF-based cooperative spectrum sensing scheme outperforms the conventional scheme.

Resource Allocation in Full-Duplex OFDMA Networks: Approaches for Full and Limited CSIs

  • Nam, Changwon;Joo, Changhee;Yoon, Sung-Guk;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.913-925
    • /
    • 2016
  • In-band wireless full-duplex is a promising technology that enables a wireless node to transmit and receive at the same time on the same frequency band. Due to the complexity of self-interference cancellation techniques, only base stations (BSs) are expected to be full-duplex capable while user terminals remain as legacy half-duplex nodes in the near future. In this case, two different nodes share a single subchannel, one for uplink and the other for downlink, which causes inter-node interference between them. In this paper, we investigate the joint problem of subchannel assignment and power allocation in a single-cell full-duplex orthogonal frequency division multiple access (OFDMA) network considering the inter-node interference. Specifically, we consider two different scenarios: i) The BS knows full channel state information (CSI), and ii) the BS obtains limited CSI through channel feedbacks from nodes. In the full CSI scenario, we design sequential resource allocation algorithms which assign subchannels first to uplink nodes and then to downlink nodes or vice versa. In the limited CSI scenario, we identify the overhead for channel measurement and feedback in full-duplex networks. Then we propose a novel resource allocation scheme where downlink nodes estimate inter-node interference with low complexity. Through simulation, we evaluate our approaches for full and limited CSIs under various scenarios and identify full-duplex gains in various practical scenarios.

Price-based Resource Allocation for Virtualized Cognitive Radio Networks

  • Li, Qun;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4748-4765
    • /
    • 2016
  • We consider a virtualized cognitive radio (CR) network, where multiple virtual network operators (VNOs) who own different virtual cognitive base stations (VCBSs) share the same physical CBS (PCBS) which is owned by an infrastructure provider (InP), sharing the spectrum with the primary user (PU). The uplink scenario is considered where the secondary users (SUs) transmit to the VCBSs. The PU is protected by constraining the interference power from the SUs. Such constraint is applied by the InP through pricing the interference. A Stackelberg game is formulated to jointly maximize the revenue of the InP and the individual utilities of the VNOs, and then the Stackelberg equilibrium is investigated. Specifically, the optimal interference price and channel allocation for the VNOs to maximize the revenue of the InP and the optimal power allocation for the SUs to maximize the individual utilities of the VNOs are derived. In addition, a low‐complexity ±‐optimal solution is also proposed for obtaining the interference price and channel allocation for the VNOs. Simulations are provided to verify the proposed strategies. It is shown that the proposed strategies are effective in resource allocation and the ±‐optimal strategy achieves practically the same performance as the optimal strategy can achieve. It is also shown that the InP will not benefit from a large interference power limit, and selecting VNOs with higher unit rate utility gain to share the resources of the InP is beneficial to both the InP and the VNOs.

A Uplink Performance Analysis of GAS-CP-CDMA Communication System (GAS-CP-CDMA 통신 시스템의 상향링크 성능분석)

  • Lee, Seong-Min;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1079-1086
    • /
    • 2008
  • In this paper, we propose a Cyclic-Prefix Code Division Multiple Access system that uses Sequences with Good Autocorrelation property(GAS-CP-CDMA) and analyze the uplink signal-to-noise ratio performance of that system. Phase-shifted sequences are used for differentiating users. The signals of the GAS-CP-CDMA system experience no (or very little) interferences from co-cell signals because of the good autocorrelation property, but user signals of adjacent cells may yield interferences. The frequency reuse factor in the ordinary CDMA system is around 0.6 and the interference from adjacent cells is about 40 percent of the total interference in the conventional CDMA system. Our numerical analysis shows that the frequency reuse factor and user capacity versus signal-to-noise ratio of the GAS-CP-CDMA system are improved comparing to the conventional CDMA system. The uplink user capacity of the proposed system can be increased up to about twice of that of the conventional CDMA system.

Performance of Cooperative NOMA Systems with Cognitive User Relay (상황인지 사용자 릴레이를 채택한 협동 NOMA 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.69-75
    • /
    • 2018
  • Recently, Non-orthogonal multiple access (NOMA) has been focused for the next generation multiple access, which has more spectral efficiency under the limited spectrum bandwidth. Moreover, the spectrum efficiency can be improved by cognitive radio in which the unlicensed secondary users can access the spectrum that is used by the licensed primary user under the limited interference. Hence, we consider the combination of NOMA and cognitive radio, and derive the performance of the cognitive cooperative NOMA system. For the cooperation, a relay is selected among near users, and the selection combining is assumed at a far user. The outage probability of the selected relay and the far user is derived in closed-form, respectively. The provided numerical results are matched well with the Monte Carlo simulation. Numerical results showed that the performance of the relay is affected from the power allocation coefficient, the minimum outage probability is observed at 0.86 of the power allocation coefficient for far user under the given conditions. More than 15 dB of signal-to-noise ratio is required to meet the outage probability of $1{\times}10^{-13}$ for the far user with the frequency acquisition probability of 0.5 compared to that of 1. It shows that the performance of the far user is very sensitive to the acquisition probability of the cognitive relay.